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Abstract—Increasing interest to secure Android ecosystem has
spawned numerous efforts to assist app developers in building
secure apps. These efforts have developed tools and techniques
capable of detecting vulnerabilities and malicious behaviors in
apps. However, there has been no evaluation of the effectiveness
of these tools and techniques to detect known vulnerabilities. Ab-
sence of such evaluations poses as a hurdle when app developers
try to choose security analysis tools to secure their apps.

In this regard, we evaluated the effectiveness of vulnerability
(and malicious behavior) detection tools for Android apps. We
considered 64 security analysis tools and empirically evaluated
19 of them — 14 vulnerability detection tools and 5 malicious
behavior detection tools — against 42 known vulnerabilities
captured by benchmarks in Ghera repository. Of the many
observations from the evaluation, the key observation is existing
security analysis tools for Android apps are very limited in
their ability to detect known vulnerabilities: all of the evaluated
vulnerability detection tools together could only detect 30 of the 42
known vulnerabilities.

Clearly, serious effort is required if security analysis tools are
to help developers build secure apps. We hope the observations
from this evaluation will help app developers choose appropri-
ate security analysis tools and persuade tool developers and
researchers to identify and address limitations in their tools and
techniques. We also hope this evaluation will catalyze or spark
a conversation in the Android security analysis community to
require more rigorous and explicit evaluation of security analysis
tools and techniques.

Index Terms—Security Analysis, Tools, Effectiveness, Empiri-
cal Evaluation, Vulnerabilities, Malicious Behavior, Android

I. INTRODUCTION

A. Motivation

Mobile devices have become an integral part of living in
present day society. They have access to huge amount of
private and sensitive data about their users and, consequently,
enable various services for their users such as banking, social
networking, and even two-step authentication. Hence, securing
mobile devices and apps that run on them is paramount.

In this context, with more than 2 billion Android devices
in the world, securing Android devices, platform, and apps
is crucial [1]. The task of securing Android devices and the
Android platform is well tackled by few teams with access
to relatively large pool of resources at companies such as
Google and Samsung. The task of securing Android apps is
split between app stores and app developers. While app stores
focus on keeping malicious apps out of the ecosystem, app
developers focus on eliminating vulnerabilities from apps to

protect app users against exploits. Despite the best efforts
of app stores, malicious apps can enter the ecosystem e.g.,
app installation from untrusted sources, inability to detect
malicious behavior in apps, access of malicious websites.
Hence, there is a need for app developers to secure their apps.

When developing apps, developers juggle with a multitude
of aspects including app security. Most app development teams
often cannot tend equally well to all such aspects as they are
often strapped for resources. Hence, there is an acute need for
automatic tools and techniques that can detect vulnerabilities
in apps and, when possible, suggest fixes for identified vulner-
abilities. While software development community has recently
realized the importance of security, developer awareness about
how security issues transpire and how to avoid them is still
lacking [2]. Hence, vulnerability detection tools need to be
applicable off the shelf with no or minimal configuration.

In this context, numerous efforts have proposed techniques
and developed tools to detect different vulnerabilities (and
malicious behavior) in Android apps. Given the number of
proposed techniques and available tools, there have been recent
efforts to assess the capabilities of these tools and techniques
[3], [4]. However, these assessments are subject to one or more
of the following limiting factors:

1) Consider techniques only as reported in the literature, i.e.,
without executing associated tools.

2) Exercise a small number of tools.
3) Consider only academic tools.
4) Consider only tools that employ specific kind of under-

lying techniques, e.g., program analysis.
5) Rely on technique-specific micro benchmarks, e.g.,

benchmarks targeting the use of taint-flow analysis to
detect information leaks.

6) Use random real world apps that are not guaranteed to
be vulnerable.

The evaluations performed in efforts that propose new tools
and techniques also suffer from such limitations. Specifically,
such evaluations focus on proving the effectiveness of pro-
posed tools and techniques in detecting specific vulnerabilities.
While such focus is necessary and good, it is not sufficient
as the evaluations do not consider the effectiveness of the
tools and techniques in the context of previously known
vulnerabilities. Hence, the results are limiting in their ability to
help app developers choose appropriate tools and techniques.



In short, to the best of our knowledge, there has been no
evaluation of the effectiveness of Android app vulnerability
detection tools to detect known vulnerabilities without being
limited by any of the above factors.

In addition to our growing dependence on mobile apps, the
prevalence of Android platform, the importance of securing
mobile apps, and the need for automatic easy-to-use off-the-
shelf tools to build secure mobile apps, here are few more
compelling reasons to evaluate the effectiveness of tools in
detecting known vulnerabilities in Android apps.

1) To develop secure apps, app developers need to choose
and use tools that are best equipped to detect the class of
vulnerabilities that they believe (based on their intimate
knowledge about their apps) will likely plague their apps,
e.g., based on the APIs used in their apps. To make
good choices, app developers need information about
the effectiveness of tools in detecting various classes of
vulnerabilities. Information about other aspects of tools
such as performance, usability, and complexity can also
be helpful in such decisions.

2) With the information that a tool cannot detect specific
class of vulnerabilities, app developers can either choose
to use a combination of tools to cover all or most of the
vulnerabilities of interest or incorporate extra measures in
their development process to help weed out vulnerabilities
that cannot be detected by the chosen set of tools.

3) App developers would want to detect and prevent known
vulnerabilities in their apps as the vulnerabilities, their
impact, and their fixes are known a priori.

4) An evaluation of effectiveness will likely expose limi-
tations/gaps in the current set of tools and techniques.
This information can aid tool developers to improve their
tools. This information can help researchers direct their
efforts to identify the cause of these limitations and ex-
plore either ways to address the limitations or alternative
approaches to prevent corresponding vulnerabilities, e.g.,
by extending platform capabilities.

B. Contributions

Motivated by above observations, we conducted an ex-
periment to evaluate the effectiveness of vulnerability and
malicious behavior detection tools for Android apps. We
considered 64 tools and empirically evaluated 19 of them. We
used benchmarks from Ghera repository [5] as they captured
42 known vulnerabilities and were known to be tool/technique
agnostic, authentic, feature specific, minimal, version specific,
comprehensive, and dual (i.e., contain both vulnerable and
malicious apps).

To ensure the findings from the above evaluation were
applicable in the context of real world apps, we evaluated
if Ghera benchmarks were representative of real world apps,
i.e., do the benchmarks capture vulnerabilities as they occur
in real world apps?

In this paper, we describe these evaluations and report
our observations from them. Besides reporting about the
effectiveness of tools and the representativeness of Ghera

benchmarks, we also report about patterns that were prevalent
in the evaluated tools.

The remainder of the paper is organized as follows. Sec-
tion II describes Ghera repository and our rationale for using it
to evaluate tools. Section III describes the experiment to mea-
sure the representativeness of Ghera benchmarks along with
our observations from the experiment. Section IV describes
the experiment to evaluate the effectiveness of vulnerability
and malicious behavior detection tools for Android apps. Sec-
tion V discusses prior evaluations of Android security analysis
tools and how our evaluation relates to them. Section VI
provides information to access the automation scripts we used
to perform the evaluation and the artifacts generated in the
evaluation. Section VII mentions possible extensions to this
effort. Section VIII summarizes our observations from this
evaluation.

II. GHERA VULNERABILITY BENCHMARKS

For this evaluation, we considered the Android app vulner-
abilities cataloged in Ghera, a growing repository of bench-
marks that captures known vulnerabilities in Android apps [5].
Most of the captured vulnerabilities have been reported and
documented in prior work.

Ghera contains two kinds of benchmarks: lean and fat. Lean
benchmarks are stripped down apps that exhibit vulnerabilities
and exploits with almost no other interesting behaviors. Fat
benchmarks are real world apps that exhibit specific known
vulnerabilities. In the rest of this paper, we will focus on lean
benchmarks and refer to them as benchmarks.

Each benchmark capturing a specific vulnerability X con-
tains three apps (where applicable): a benign (vulnerable) app
with vulnerability X,1 a malicious app capable of exploiting
vulnerability X in the benign app, and a secure app without
vulnerability X and, hence, not exploitable by the malicious
app. Malicious apps are absent in benchmarks when malicious
behavior occurs in outside the Android environment, e.g., web
app. Secure apps are absent in benchmarks when the fix is
not programmatic, e.g., fix the build process. Each benchmark
is accompanied by instructions to demonstrate the captured
vulnerability and the corresponding exploit by building and
executing the associated apps. Consequently, the presence and
absence of vulnerabilities and exploits in these benchmarks is
verifiable.

At the time of this evaluation, Ghera contained 42 bench-
marks grouped into the following seven categories based on
the nature of the APIs (including features of XML-based con-
figuration) involved in the creation of captured vulnerabilities.
(Category labels appear in square brackets.)

1) Crypto category contains 4 vulnerabilities involving cryp-
tography API. [Crypto]

2) ICC category contains 16 vulnerabilities involving inter-
component communication (ICC) API. [ICC]

3) Networking category contains 2 vulnerabilities involving
networking (non-web) API. [Net]

1We use the terms benign and vulnerable interchangeably.



4) Permission category contains 1 vulnerability involving
permission API. [Perm]

5) Storage category contains 6 vulnerabilities involving data
storage and SQL database APIs. [Store]

6) System category contains 4 vulnerabilities involving sys-
tem API dealing with processes. [Sys]

7) Web category contains 9 vulnerabilities involving web
API. [Web]

Section A briefly catalogs these vulnerabilities and their
canonical references.

A. Why Use Ghera?

For this tools evaluation to be useful to tool users, tool
developers, and researchers, the evaluation should be based on
vulnerabilities that are valid (i.e., will result in a weakness in
an app), general (i.e., do not depend on uncommon constraints
such as rooted device or admin access), exploitable (i.e., can
be used to inflict harm), and current (i.e., occur in existing
apps and can occur in new apps).

The vulnerabilities captured in Ghera benchmarks have
been either previously reported in literature or documented in
Android documentation; hence, they are valid. These vulnera-
bilities can be verified by executing the benign and malicious
apps in Ghera benchmarks on vanilla Android devices and
emulators; hence, they are general and exploitable. These
vulnerabilities are current as they are based on Android API
levels 19 thru 25, which enable more than 90% of Android
devices in the world and are targeted by both existing and new
apps.

Due to these characteristics and the salient characteristics
of Ghera — tool and technique agnostic, authentic, feature
specific, contextual (lean), version specific, duality and com-
prehensive — described in [5], Ghera is well-suited for this
evaluation.

III. REPRESENTATIVENESS OF GHERA BENCHMARKS

Along with the above requirements, the manifestation of a
vulnerability considered in the evaluation should be represen-
tative of the real world manifestations of the vulnerability.

A vulnerability can manifest/occur in different ways in
apps due to various aspects such as producers and consumers
of data, nature of data, APIs involved in handling and pro-
cessing data, control/data flow paths connecting various code
fragments involved in the vulnerability, and platform features
involved in the vulnerability. As a simple example, consider
a vulnerability that leads to information leak: sensitive data
is written into an insecure location. This vulnerability can
manifest in multiple ways. Specifically, at the least, each
combination of different ways of writing data into a location
(e.g., using different I/O APIs) and different insecure locations
(e.g., insecure file, untrusted socket) can lead to a unique
manifestation of the vulnerability.

In terms of representativeness, there is no evidence bench-
marks in Ghera capture vulnerabilities as they occur in real
world apps; hence, we needed to establish the representative-
ness of these benchmarks.

A. How to Measure Representativeness?

Since Ghera benchmarks capture specific manifestations of
known vulnerabilities, we wanted to identify these manifes-
tations in real world apps to establish the representativeness
of the benchmarks. However, there was no definitive list of
versions of apps that exhibit known vulnerabilities. So, we ex-
plored CVE [6], an open database of vulnerabilities discovered
in real world Android apps, to identify vulnerable versions of
apps. We found that most CVE vulnerability reports failed
to provide sufficient information about the validity, exploit-
ability, and manifestation of vulnerabilities in the reported
apps. Next, we considered the option of manually examining
apps mentioned in CVE reports for vulnerabilities. This option
was not viable because CVE vulnerability reports do not
include copies of reported apps. Also, while app version
information from CVE could be used to download apps for
manual examination, only the latest version of apps were
available from most Android app stores and app vendors.

Finally, we decided to use usage information of Android
APIs involved in manifestations of vulnerabilities as a proxy
to establish the representativeness of Ghera benchmarks. The
rationale for this decision is the likelihood of a vulnerability
occurring in real world apps will be directly proportional to the
number of real world apps using the Android APIs involved
in the vulnerability. So, as a weak yet general measure of
representativeness, we identified Android APIs used in Ghera
benchmarks and measured how often these APIs were used in
real world apps.

B. Experiment

1) Source of Real World Apps: We used AndroZoo as the
source of real world Android apps. AndroZoo is a growing
collection of Android apps gathered from several sources
including the official Google Play store [7]. In May 2018,
AndroZoo contained more than 5.8 million different APKs
(app bundles).

Every APK (app bundle) contains an XML-based manifest
file and a DEX file that contains the code and data (i.e.,
resources, assets) corresponding to the app. By design, each
Android app is self contained. So, the DEX file contains all
code that is necessary to execute the app but not provided by
the underlying Android Framework or Runtime. Often, this
includes code for Android support library.

AndroZoo maintains a list of all of the gathered APKs. This
list documents various features of APKs such as SHA256 hash
of an APK (required to download the APK from AndroZoo),
size of an APK, and the date (dex date) associated with
the contained DEX file.2 However, this list does not contain
information about API levels (Android versions) that are
targeted by the APKs; this information can be recovered from
the APKs after downloading them.

2) App Sampling: Each version of Android is associated
with an API level, e.g., Android versions 5.0 and 5.1 are
associated with API levels 21 and 22, respectively. Every

2dex date may not correspond to the release date of the app.



Android app is associated with a minimum API level (ver-
sion) of Android required to use the app and a target API
level (version) of Android that is ideal to use the app; this
information is available in the app’s manifest file.

At the time of this tools evaluation, Ghera benchmarks
targeted API levels 19 thru 25 excluding 20.34 So, we decided
to select only apps that targeted API level 19 or higher and
required minimum API level 14 or higher.5 Since minimum
and target API levels of apps were not available in the
AndroZoo APK list, we decided to select apps based on their
release dates. As API level 19 was released in November
2014, we decided to select only apps that were released after
2014. Since release dates of APKs were not available from
AndroZoo APK list, we decided to use dex date as a weak
proxy for release date of apps.

Based on the above decisions, we analyzed the list of APKs
available from AndroZoo to select the APKs to download. We
found a total of 2.3 million APKs with dex date between 2015
and 2018 (both inclusive). In these APKs, there were 790K,
1346K, 156K, and 17K APKs with dex date from years 2015,
2016, 2017, and 2018, respectively. From these APKs, we
drew an unequal probability sample without replacement and
with probabilities 0.1, 0.2, 0.4, and 0.8 of selecting an APK
from years 2015 thru 2018, respectively. We used unequal
probability sampling to give preference to latest APKs as the
selected apps would likely target recent API levels and to
adjust for the non-uniformity of APK distribution across years.
To create a sample with at least 100K real world Android apps
that targeted the chosen API levels, we tried to download 339K
APKs and ended up downloading 292K unique APKs. Finally,
we used apkanalyzer tool from Android Studio to identify
and discard downloaded apps (APKs) with target API level
less than 19 or minimum API level less than 14. This resulted
in a sample of 111K real world APKs that targeted API levels
19 thru 25 (excluding 20) or higher.

3) API-based App Profiling: Android apps access various
capabilities of the Android platform via features of XML-
based manifest files and Android programming APIs. We refer
to the published Android programming APIs and the elements
and attributes (features) of manifest files collectively as APIs.

For each app (APK), we collected its API profile based on
the APIs that were used by or defined in the app and were
deemed as relevant to this evaluation as follows.

1) From the list of elements and attributes that can be present
in a manifest file, informed by Ghera benchmarks, we
conservatively identified the values of 7 attributes (e.g.,
intent-filter/category@name), the presence of 6 elements
(e.g., uses-permission), and the presence of 26 attributes
(e.g., path-permission@writePermission) as APIs relevant

3API level 20 was excluded because it was API level 19 with wearable
extensions.

4In the rest of this manuscript, “API levels 19 thru 25” means API levels
19 thru 25 excluding 20.

5We chose API level 14 as the cut-off for minimum API level as the number
of apps targeting API level 19 peaked at minimum API level 14.

to this evaluation. For each app, we recorded which of
these APIs were used in the app’s manifest.

2) For an app, we considered all published (public and
protected) methods along with all methods that were used
but not defined in the app. Former methods accounted
for callback APIs and latter methods accounted service
offering APIs. We also considered all fields used in the
app. From these considered APIs, we discarded obfus-
cated APIs, i.e., with single character name. To make
apps comparable in the presence of definitions and uses
of overridden Java methods (APIs), if a method was
overridden, then we considered the fully qualified name
(FQN) of the overridden method in place of the FQN of
the overriding method (using Class Hierarchy analysis).
Since we wanted to measure representativeness in terms
of Android APIs, we discarded APIs whose FQN did
not have any of these prefixes: java, org, android, and
com.android. For each app, we recorded the remaining
APIs.

3) Numerous APIs are commonly used in almost all Android
APKs, e.g., android.graphics.*. To avoid their influence
on the result, we decided to ignore such APIs that are
not relevant to app security. So, we considered the benign
app of the template benchmark in Ghera repository; this
app is a basic Android app with one activity containing
couple of widgets and no functionality. Out of the 1502
APIs used in this app, we manually identified 1134 APIs
as commonly used in Android apps and not relevant to
app security. For each app, we removed these APIs from
its list of recorded APIs and considered the remaining
APIs as relevant APIs.

To collect API profiles of apps in Ghera, we performed the
above steps starting with the APKs available in Ghera because
extraneous APIs had been eliminated from these APKs by
using proguard tool.

While collecting API-based profile of apps in AndroZoo
sample, we discarded 2% of the APKs due to errors in APKs
(e.g., missing required attributes) and tooling issues. Finally,
we ended up with a sample of 109K real world APKs (apps)
from AndroZoo.

4) Measuring Representativeness: We identified the set of
relevant APIs associated with benign apps in Ghera using the
steps described in the previous section. Of the resulting 601
unique relevant APIs, we identified 117 as security related
APIs. For both these sets of APIs, we measured representa-
tiveness in two ways.

1) Using API Use Percentage. For each API, we calculated
the percentage of sample apps that used the API.
To observe how representativeness changes across API
levels, we created API level specific app samples. The
app sample specific to API level k contained every sample
app whose minimum API level was less than or equal
to k and target API level was greater than or equal to
k. In each API level specific sample, for each API, we
calculated the percentage of apps that used the API.



The rationale for this measurement is, if Ghera bench-
marks are representative of real world apps in terms of
using an API, then a large number of real world apps
would use the API.

2) Comparing Sampling Proportions. For each API, we
calculated the sampling proportion of sample apps that
used the API. To calculate the sampling proportion, we
considered 80% of the sample apps, partitioned it into
sub-samples containing 40 units each, and calculated the
mean of the proportions in each sub-sample. We also
calculated the sampling proportion of benign apps in
Ghera that used the API. We then compared the sampling
proportions of an API with confidence level = 0.95, p-
value ≤ 0.01, and the null hypothesis being the proportion
of benign apps in Ghera using the API is less than or
equal to the proportion of real world apps using the API.
We performed this proportion test both across API levels
and at specific API levels.
The rationale for this measurement is, if Ghera bench-
marks are representative of real world apps in terms of
using an API, then the proportion of Ghera benchmarks
using the API should be less than or equal to the
proportion of real world apps using the API.

With Top 200 Apps. We gathered the top 200 apps from
Google Pay store on April 18, 2018, and repeated the above
measurements both across API levels and at specific API
levels. Only 167 of the top 200 apps made it thru the app
sampling and API-based app profiling process due to API
level restrictions, errors in APKs, and tooling issues. Hence,
we considered 40 sub-samples (containing 40 apps each)
when measuring representativeness by comparing sampling
proportions.

C. Observations

1) Based on API Use Percentage: The color graphs in
FIGURE 1 show the percentage of sample real world Android
apps using the APIs used in benign apps in Ghera. Y axis
denotes percentage of apps using an API. X axis denotes APIs
in decreasing order of percentage of their usage in API level 25
specific sample. The graphs on the left are based on relevant
APIs used in benign apps in Ghera while the graphs on the
right are based only on security related APIs. The graphs on
the top are based on the sample of apps from AndroZoo while
the graphs on the bottom are based on the sample of top 200
apps from Google Play store. To avoid clutter, we have not
plotted data for API levels 21 and 24 as they closely related
to API levels 22 and 25, respectively.

Since API level 25 is the latest API level considered in this
evaluation, consider the data for API level 25 specific samples.
In AndroZoo sample, 83% (503 out of 601) of relevant APIs
used in benign apps in Ghera were each used by more than
50% (54K) of real world apps. For top 200 apps sample, this
number increases to 87% (523 out of 601). When considering
only security related APIs, 58% (68 out of 117) of APIs used
in benign apps in Ghera were each used by more than 50%

of real world apps in AndroZoo sample. For top 200 apps
sample, this number increases to 71% (84 out of 117).

Barring few APIs in case of AndroZoo sample, the above
observations hold true for all API levels considered from 19
thru 25 in both AndroZoo sample and top 200 apps sample.

Upon considering this measurement for malicious apps and
secure apps in Ghera, we observed the percentage of APIs that
were used in Ghera and were used by more than 50% of real
world apps to be similar or higher than the above percentages
in both AndroZoo sample and top 200 apps sample.

Above observations suggest a large number of real world
apps use a large number of APIs used in Ghera benchmarks.
Consequently, we can conclude Ghera benchmarks are repre-
sentative of real world apps.

Side Note Observe that many security related APIs are used
by a large percentage of top 200 apps. This is no surprise as
these apps are likely to be widely used and are built to keep
their user’s information secure. In comparison, the number of
security related APIs being used in real world apps in general
(AndroZoo sample) is pretty high — 68 security related APIs
are each used by more than 54K apps from AndroZoo sample
in all considered API levels. This suggests a large number
of real world apps use security related APIs, knowingly or
unknowingly and correctly or incorrectly. Hence, there is a
huge opportunity to help identify and fix incorrect use of
security related APIs.

2) Based on Sampling Proportions: For APIs used in
benign apps in Ghera, columns 4, 5, 8, and 9 in TABLE I
report the number of APIs for which the null hypothesis could
not be rejected. This data suggests, for at least 76% of relevant
APIs, the proportion of Ghera apps that used an API could
be less than or equal to the proportion of real world apps in
AndroZoo sample that use the same API. This is true across
all API levels and at specific API levels. This is also true for
at least 96% of security related APIs. In case of top 200 apps
sample, this is true for at least 92% of relevant APIs and 99%
of security related APIs.

Upon considering this measurement for malicious apps and
secure apps in Ghera, we made similar observations in both
AndroZoo sample and top 200 apps sample.

Considering Ghera benchmarks as a custom sample in
which the proportion of benchmarks that used a specific set
of APIs (relevant or security related) was expected to be high,
the above observations suggest such proportions are higher for
these APIs in real world apps. Consequently, we can conclude
Ghera benchmarks are representative of real world apps.

D. Threats to Validity

This evaluation of representativeness is based on a weak
measure of manifestation of vulnerabilities — use of APIs
used in vulnerabilities. Hence, this evaluation could have
ignored the influence of aspects such as API usage context,
nature of involved data, and data/control flow path connect-
ing various API uses. Such influences can be verified and
addressed by measuring representativeness while considering
these aspects.



FIGURE 1: PERCENTAGE OF APPS THAT USE APIS USED IN BENIGN APPS IN GHERA.

TABLE I: REPRESENTATIVENESS BASED ON SAMPLE PROPORTIONS TEST. OF THE 601 SELECTED (ALL) APIS, 117 APIS WERE SECURITY RELATED.

AndroZoo Apps Top 200 Apps

# Representative APIs (%) # Representative APIs (%)

API Sample # of Sub- Relevant Security Sample # of Sub- Relevant Security
Level Size Samples Related Size Samples Related

19-25 109028 2180 459 (76) 113 (96) 168 40 555 (92) 116 (99)

19 108925 2178 459 (76) 113 (96) 147 40 562 (93) 116 (99)
21 96364 1927 464 (77) 113 (96) 161 40 557 (92) 116 (99)
22 80664 1613 471 (78) 113 (96) 157 40 562 (93) 116 (99)
23 56212 1124 479 (79) 114 (97) 132 40 553 (92) 116 (99)
24 7616 152 483 (80) 114 (97) 112 40 566 (94) 116 (99)
25 2901 58 473 (78) 114 (97) 106 40 567 (94) 116 (99)

While a large sample of real world apps were considered,
the distribution of apps across targeted API levels was skewed
— there were fewer apps targeting recent API levels. Hence,
recent API level specific samples may not have exhibited the
variations observed in larger API specific samples, e.g., API
level 19 (see FIGURE 1). This possibility can be verified by
repeating this experiment with API level specific app samples
of comparable sizes.

The version of Ghera benchmarks considered in this evalua-
tion was developed when API level 25 was the latest Android
API level. So, it is possible that tooling and library support
available for API level 25 could have influenced the structure
of Ghera benchmarks and, consequently, the observations in

Section III-B. This possibility can be verified by repeating this
experiment in the future with tooling and library support for
newer API levels.

We have taken extreme care to avoid errors while collecting
and analyzing data. Even so, there could be errors in our
evaluation in the form of commission errors (e.g., misinter-
pretation of data), omission errors (e.g., missed data points),
and automation errors. This threat to validity can be addressed
by examining both our raw and processed data sets (see
Section VI), analyzing the automation scripts, and repeating
the experiment.



IV. TOOLS EVALUATION

A. Android App Security Analysis Solutions

. From June 2017,
we started collecting information about such solutions. Our
primary sources of information were research papers [4], [3]
and repositories and blog posts collating information about
Android security solutions [8], [9].

From these sources, we considered 64 solutions that were
related to Android security.6 We classified them along the
following dimensions.

1) Tools vs Frameworks: Tools detect a fixed set of security
issues. While they can be applied immediately, they are
limited to detecting a fixed set of issues. On the other
hand, frameworks facilitate creation of tools that can
detect specific security issues. While they are not im-
mediately applicable to detect vulnerabilities and involve
effort to create tools, they enable detection of relatively
open set of issues.

2) Free vs Commercial: Solutions are available either freely
or for a fee.

3) Maintained vs Unmaintained: Solutions are either ac-
tively maintained or unmaintained. Typically, unmain-
tained solutions do not support currently supported ver-
sions of Android. This is also true of some maintained
solutions

4) Vulnerability Detection vs Malicious Behavior Detection:
Solutions either detect vulnerabilities in an app or flag
signs of malicious behavior in an app. The former is
typically used by app developers while the latter is used
by app stores and end users.

5) Static Analysis vs Dynamic Analysis: Solutions that rely
on static analysis analyze either source code or Dex
bytecode of an app and provide verdicts about possible
security issues in the app. Since the underlying analysis
abstracts the execution environment and semantics along
with the interactions with users and other apps, such
solutions can detect issues that occur in a variety of
settings. However, such solutions can consider invalid
settings (due to too permissive abstractions) and, hence,
have high false positive rate.
In contrast, solutions that rely on dynamic analysis ex-
ecute apps and check for security issues at runtime.
Consequently, they have very low false positive rate.
However, they are often prone to high false negative rate
because they may fail to explore specific settings required
to trigger security issues in an app.

6) Local vs Remote: Solutions are available as executables
or as sources from which executables can be built.
These solutions are installed and executed locally by the
developer. They are also executed within the IDE or as
part of the build process.

6 The complete list of tools that were considered for this evaluation is
available at https://bitbucket.org/secure-it-i/may2018.

Solutions are also available remotely as web services
(or via web portals). Developers use these services by
submitting the APKs of their apps for analysis and later
accessing the analysis reports. Unlike local solutions,
developers are not privy to what happens to their apps
when using remote solutions.

B. Tools Selection

1) Shallow Selection: To select tools for this evaluation,
we first screened the considered 64 solutions by reading their
documentation and any available resources. We rejected 5
solutions because they were not well documented, e.g., no
documentation, lack of instructions to build and use tools. This
was necessary to eliminate human bias resulting from the effort
involved in discovering how to build and use a solution, e.g.,
DroidLegacy [10], BlueSeal [11]. We rejected AppGuard [12]
because its documentation was not in English. We rejected 6
solutions such as Aquifer [13], Aurasium [14], and FlaskDroid
[15] as they were not intended to detect vulnerabilities, e.g.,
enforce security policy.

Of the remaining 52 solutions, we selected solutions based
on the first three dimensions mentioned in Section IV-A.

In terms of tools vs frameworks, we were interested in solu-
tions that could readily detect vulnerabilities or malicious be-
haviors with no or minimal adaptation, e.g., build an extension
to detect a specific vulnerability. The rationale was to eliminate
human bias and errors involved in identifying, creating, and
using the appropriate adaptations. Also, we wanted to mimic
a simple developer workflow — procure/build the tool, follow
its documentation, and apply it to programs. Consequently,
we rejected 16 tools that only enabled security analysis, e.g.,
Drozer [35], ConDroid [36]. When a framework provided
pre-packaged extensions to detect vulnerabilities or malicious
behavior, we selected such frameworks and considered each
such extension as a distinct tool, e.g., we selected Amandroid
framework as it comes with seven pre-packaged vulnerability
detection extensions (i.e., data leakage, intent injection, comm
leakage, password tracking, OAuth tracking, SSL misuse, and
crypto misuse) that can be used as tools [16].

In terms of free vs commercial, we rejected AppRay as
it was a commercial solution [37]. While AppCritique was
a commercial solution, a feature limited version of it was
available for free. We considered the free version and did not
reject AppCritique.

In terms of maintained vs unmaintained, we focused on
selecting only maintained tools. So, we rejected AndroWarn
and ScanDroid tools as they were not updated after 2013 [38],
[39] . In a similar vein, since we were committed to currently
supported Android API levels, we rejected TaintDroid as it
supported only API levels 18 or below [40].

Next, we focused on tools that could be applied as is
without extensive configuration (or inputs). The rationale was
to eliminate human bias and errors involved in identifying and
using appropriate configurations. So, we rejected tools that re-
quired additional inputs to detect vulnerabilities. Specifically,

https://bitbucket.org/secure-it-i/may2018


TABLE II: INFORMATION ABOUT EVALUATED TOOLS. TOP PART DESCRIBES VULNERABILITY DETECTION TOOLS. BOTTOM PART DESCRIBES MALICIOUS
BEHAVIOR DETECTION TOOLS. “?” DENOTES UNKNOWN INFORMATION. “3” DENOTES THE TOOL IS APPLICABLE TO THE VULNERABILITY CATEGORY IN
GHERA. EMPTY CELL DENOTES NOT APPLICABLE CASES.

Tool [Reference] Commit Id / Updated Static / Local / API (Vulnerability) Categories Set Up
Version (Published) Dynamic Remote Crypto ICC Net Perm Store Sys Web Time (sec)

Amandroid [16] 3.1.2 2017 (2014) S L 3 3 3600
AndroBugs [17] 7fd3a2c 2015 (2015) S L 3 3 3 3 3 3 600
AppCritique [18] ? ? (?) ? R 3 3 3 3 3 3
COVERT [19] 2.3 2015 (2015) S L 3 3 3 3 3 3 3 2700
DialDroid [20] 25daa37 2018 (2016) S L 3 3600
DevKnox [21] 2.4.0 2017 (2016) S L 3 3 3 3 3 3 3 600
FixDroid [22] 1.2.1 2017 (2017) S L 3 3 3 3 3 600
FlowDroid [23] 2.5.1 2018 (2013) S L 3 3 3 9000
HornDroid [24] aa92e46 2018 (2017) S L 3 3 3 3 3 600
JAADS [25] 0.1 2017 (2017) S L 3 3 3 3 900
MalloDroid [26] 78f4e52 2013 (2012) S L 3 600
Marvin-SAa [27] 6498add 2016 (2016) S L 3 3 3 3 3 3 3 600
MobSF [28] b0efdc5 2018 (2015) SD L 3 3 3 3 3 3 1200
QARK [29] 1dd2fea 2017 (2015) S L 3 3 3 3 3 3 3 600

AndroTotal [30] ? ? (2013) SD R ? ? ? ? ? ? ?
HickWall [31] ? ? (2014) SD R ? ? ? ? ? ? ?
Maldrolyzer [32] 0919d46 2015 (2015) S L ? ? ? ? ? ? ? 600
NVISO ApkScan [33] ? ? (?) SD R ? ? ? ? ? ? ?
VirusTotal [34] ? ? (?) S R ? ? ? ? ? ? ?

aWe refer to Marvin Static Analyzer as Marvin-SA.

we rejected Sparta as it required analyzed apps to be annotated
with security types [41].

Finally, we focused on the applicability of tools to Ghera
benchmarks. We considered only tools that claimed to detect
vulnerabilities stemming from APIs covered by at least one
category in Ghera benchmarks. For such tools, based on our
knowledge of Ghera benchmarks and shallow exploration of
the tools, we assessed if the tools were indeed applicable to the
benchmarks in the covered categories. This included checking
if the APIs used in Ghera benchmarks were mentioned in any
lists of APIs bundled with tools, e.g., list of information source
and sink APIs bundled with HornDroid and FlowDroid. In this
regard, we rejected 3 tools. We rejected PScout [42] because
PScout focused on vulnerabilities related to over/under use
of permissions and the only permission related benchmark
in Ghera was not related to over/under use of permissions.
We rejected StaDyna because StaDyna detected malicious
behavior stemming from dynamic code loading and Ghera
did not have benchmarks that used dynamic code loading
[43]. We also rejected Amandroid’s OAuth tracking extension
(Amandroid5) and LetterBomb [44] as they were not appli-
cable to any Ghera benchmark.7

2) Deep Selection: Of the remaining 28 tools, for tools that
could be executed locally, we downloaded the latest official
release of the tool, e.g., Amandroid.

If such a release was not available, then we downloaded the
most recent version of the tool (executable or source code)
from the master branch of its repository, e.g., AndroBugs.
We then followed the instructions in the tool’s documenta-

7

.

tion to build and set up the tool. If we encountered issues
during this phase, then we tried to fix the issues. These
issues stemmed for reasons such as tools depending on older
versions of other tools (e.g., HornDroid failed against real
world apps as it was using an older version of apktool, a
decompiler for Android apps), incorrect documentation (e.g.,
documented path to the DialDroid executable was incorrect),
and incomplete documentation (e.g., IccTA’s documentation
did not mention the versions of required dependencies [45]).
We stopped trying to fix an issue and rejected a tool if we
could not figure out a fix by interpreting the error messages
and by exploring existing publicly available bug reports. This
resulted in rejecting DidFail [46].

Of the remaining tools, we tested 18 local tools using apps
from I1, I2, W8, and W9 Ghera benchmarks and Offer Up,
Instagram, Microsoft Outlook, and My Fitness Pal’s Calorie
Counter apps from Google Play store. We executed each tool
with each of the above apps as input on a 16 core Linux
machine with 64GB RAM and with 15 minute time out period.
If a tool failed to execute successfully on all of these apps, then
we rejected the tool. Specifically, we rejected IccTA and SMV
Hunter because they failed to process the test apps by throwing
exceptions [45], [47]. We rejected CuckooDroid and DroidSafe
because they ran out of time or memory while processing the
test apps [48], [49].

For 9 tools that were available only remotely, we tested
them by submitting the above test apps for analysis. If a tool’s
web service was unavailable, failed to process all of the test
apps, or did not provide feedback within 30–60 minutes, then
we rejected it. Consequently, we rejected 4 remote tools, e.g.,
TraceDroid [50].



3) Selected Tools: TABLE II reports information about the
set of 19 tools that were selected for this evaluation along with
their canonical references. For each of these tools, if available,
the table reports the version (or the commit id) selected for
evaluation, date of its initial publication and latest update,
whether it uses static analysis (S) or dynamic analysis (D)
or both (SD), whether it runs locally (L) or remotely (R), and
the Ghera categories that it is applicable to. For each of the
selected tools, the last column in the table reports the time
spent to set up tools on a Linux machine.

Unlike vulnerability detection tools, malicious behavior de-
tection tools do not publicly disclose the malicious behaviors
they can detect. Hence, we do not know the categories of
Ghera benchmarks to which these tools apply.

C. Experiment

Every selected vulnerability detection tool (including pre-
packaged extensions considered as tools) was applied in its
default configuration to the benign app and the secure app
(separately) of every applicable Ghera benchmark (given in
column 9 in TABLE III).

Every selected malicious behavior detection tool was ap-
plied in its default configuration to the malicious app of every
applicable Ghera benchmark. Unlike in case of vulnerability
detection tools, malicious behavior detection tools were eval-
uated on only 33 Ghera benchmarks because 9 benchmarks
— 1 in Networking category and 8 in Web category — did
not have malicious apps as they relied on non-Android apps
to mount man-in-the-middle exploits. Further, each tool was
evaluated on all 33 benchmarks as there was no information
about the kind of exploits detected by the tool.

The tools were executed on a 16 core Linux machine
with 64GB RAM and with 15 minutes time out. For each
execution, we recorded the execution time and any output
reports, error traces, and stack traces. We then examined the
output to determine the verdict and its veracity pertaining to
a vulnerability v.

Variations: FixDroid was not evaluated on secure apps in
Ghera because Android Studio version 3.0.1 was required to
build the secure apps in Ghera and FixDroid was available as
a plugin only to Android Studio version 2.3.3. Further, since
benchmarks C4, I13, I15, and S4 were added after Ghera was
migrated to Android Studio version 3.0.1, FixDroid was not
evaluated on these benchmarks; hence, FixDroid was evaluated
on only 38 Ghera benchmarks.

COVERT and DialDroid detect vulnerabilities stemming
from inter-app communications, e.g., collusion, compositional
vulnerabilities. So, to evaluate these tools, we applied each tool
in its default configuration to every 33 Ghera benchmarks with
malicious apps by providing the benign app and the malicious
app together as input.

JAADS operates in two modes: fast mode in which only
intra-procedural analysis is performed and full mode in which
both intra- and inter-procedural analyses are performed. Since
the modes can be selected easily, we evaluated JAADS in both
modes.

QARK analyzes both source code and APK of an app.
It decompiles APK into source form. Since the structure of
reverse engineered source code may differ from original source
code and we did not know if this could affect the accuracy of
QARK’s verdicts, we evaluated QARK with both APKs and
source code.

D. Observations & Questions

1) Tools Selection: Of the considered 64 solutions, 17
tools (including Amandroid) were intended to enable security
analysis of Android apps. This raises two related questions
worth pursuing: how expressive, effective, and easy-to-use are
these tools? and are Android app developers and security
analysts willing to invest effort in using tools that enable
security analysis?

We rejected only 32% of tools (9 out of 28) considered
in deep selection. Even considering the number of instances
when evaluated tools failed to process certain benchmarks,
such low rejection rate is rather impressive. This suggests
more tool developers are putting in effort to release robust
security analysis tools. This number can be further improved
by distributing executables (where applicable), providing com-
plete and accurate build instructions (e.g., versions of required
dependencies) for local tools, and providing estimated turn
around times for remote tools.

If the sample of tools considered in this evaluation is rep-
resentative of the population of Android app security analysis
tools, then almost every Android app security analysis tool
relies on static analysis, i.e., 18 out of 19.

While every vulnerability detection tool publicly discloses
the category of vulnerabilities it tries to detect, none of
the malicious behavior detection tools publicly disclose the
malicious behaviors they try to detect. Also, while almost all
vulnerability detection tools are available as locally executable
tools (i.e., 13 out of 14), almost none of the malicious behavior
detection tools are available as remote services, i.e., 4 out of
5. So, in terms of information about detection capabilities, the
vulnerability detection tools are open and malicious behavior
detection tools are closed. This difference may stem from the
purpose of these tools: vulnerability detection tools are in-
tended to build secure apps while malicious behavior analysis
tools are intended to thwart malicious apps.

Ignoring tools with unknown update dates (“?” in column 3
of TABLE II) and considering the evaluation was conducted
between June 2017 and May 2018, 9 out of 13 tools are less
than 1.5 years old (2017 or later) and 12 out of 13 are less than
or about 3 years old (2015 or later). Hence, the considered
tools are current and the resulting observations are highly
likely to be representative of the current state of the freely
available Android app security analysis tools.

2) Vulnerability Detection Tools: Table III summarizes
the effectiveness of tools in detecting different categories of
vulnerabilities.

Most of the tools (11 out of 14) were applicable to every
Ghera benchmark. With the exception of MalloDroid, the rest
of tools were applicable to 24 or more Ghera benchmarks.



This observation is also true of Amandroid if the results of its
pre-packaged extensions are considered together.

Every Ghera benchmark is associated with exactly one
unique vulnerability v, and its benign app exhibits v while
its secure apps does not exhibit v. So, for a tool, for each
applicable benchmark, we classified the tool’s verdict for the
benign app as either true positive (i.e., v was detected in
the benign app) or false negative (i.e., v was not detected
in the benign app). We classified the tool’s verdict for the
secure app as either true negative (i.e., v was not detected
in a secure app) or false positive (i.e., v was detected in a
secure app). Columns 10, 11, and 12 in TABLE III reports
true positives, false negatives, and true negatives, respectively.
False positives are not reported in the table as none of the tools
except DevKnox (observe the D under System benchmarks
in TABLE III) and data leakage extension of Amandroid
(observe (1) for Amandroid1 under Storage benchmarks
in TABLE III) provided false positives verdicts. Reported
verdicts do not include cases in which a tool failed to process
apps, e.g., the number of true negatives for DialDroid is 0
because it failed to process every secure app.

Based on the classification of the verdicts, 4 out of 14
tools detected none of the vulnerabilities captured in Ghera
(considering all extensions of Amandroid as one tool). Even in
case of tools that detected some of the vulnerabilities captured
in Ghera, none of the tools detected more than 15 out of the 42
vulnerabilities. This is also evident by the number of N’s in
TABLE III. This suggests current tools (in isolation) are very
limited in their ability to detect known vulnerabilities captured
in Ghera.

For 11 out of 14 tools, the number of false negatives
was within 30% of the number of true negatives.8 This
suggests two possibilities: most tools prefer to report only
valid vulnerabilities or most tools can only detect specific
manifestations of vulnerabilities. Both these possibilities have
limited effectiveness in assisting developers build secure apps
because validity of reported vulnerabilities takes precedence
over building secure apps.

Tools make claims about specific vulnerabilities or class
of vulnerabilities that they can detect. So, we examined such
claims. While both COVERT and DialDroid claim to detect
vulnerabilities related to communicating apps, neither detected
such vulnerabilities in any of the 33 Ghera benchmarks that
are contained a benign app and a malicious app. While Mal-
loDroid focuses solely on SSL/TLS related vulnerabilities, it
did not detect any of the SSL vulnerabilities captured in Ghera
benchmarks. We observed similar failures with FixDroid. This
suggests there exists a gap between the claimed capabilities
and the observed capabilities of tools that could lead to
vulnerabilities in apps.

Different tools use different kinds of analysis under the
hood to perform security analysis. Tools such as Amandroid,
FlowDroid, and HornDroid rely on deep analysis (e.g., data

8We considered all variations of a tool as one tool, e.g., JAADS. We counted
DialDroid as it failed to process every secure app in Ghera. We did not count
FixDroid as it was not evaluated on secure apps in Ghera

flow analysis) while tools such as QARK, Marvin-SA, and
AndroBugs rely on shallow analysis (e.g., searching for code
smells/patterns). In the evaluation, tools that rely on deep
analysis reported fewer true positives and more false negatives
than tools that rely on shallow analysis. A possible reason
for this could be deep analysis tools often depend on extra
information about the analyzed app (e.g., a custom list of
sources and sinks to be used in data flow analysis) and we did
not provide such extra information in our evaluation. However,
JAADS was equally effective in both fast (intra-procedural
analysis) and full (intra- and inter-procedural analyses) mode.
Also, FixDroid was more effective than other deep analysis
tools while operating within an IDE. This leads us to two
questions: are Android app security analysis tools that rely on
deep analysis effective in detecting vulnerabilities? and are
the deep analysis techniques used in these tools well suited to
detect vulnerabilities in Android apps? This question is perti-
nent because Ghera benchmarks capture known vulnerabilities
and the benchmarks are small/lean in complexity, features, and
size, i.e., often less than 1000 lines of developer created Java,
XML, and build system code.

Switching the focus to vulnerabilities, each of the 5 vulner-
abilities captured by Permission and System benchmarks were
detected by some tool. However, none of the 2 vulnerabilities
captured by Networking benchmarks category were detected
by any tool. Considering all vulnerabilities, 12 out of 42
known vulnerabilities captured in Ghera were not detected
by any tool. In other words, using all tools together is
not sufficient to detect the known vulnerabilities captured
in Ghera. However, 30 of the 42 vulnerabilities were de-
tected using 15 tools with no or minimal configuration. This
raises the questions: with reasonable configuration effort, can
the evaluated tools be configured to detect the undetected
vulnerabilities? and would the situation improve if rejected
vulnerability detection tools could be used?

In the evaluation, 8 out of 14 tools reported vulnerabilities
that were not the focus of Ghera benchmarks. (See last column
in TABLE III.) Upon manual examination of the benchmarks,
we found none of these reported vulnerabilities were present
in the benchmarks.

For tools that completed the analysis of apps (either nor-
mally or exceptionally), the median run time was 5 seconds
with the lowest and highest run times being 2 and 63 seconds,
respectively. So, in terms of performance, all of the tools that
completed analysis exhibited good run times.

While the two modes of QARK provided identical verdicts,
they exhibited the largest difference in run times: 2 seconds
source code analysis mode and 63 seconds in APK analysis
mode, which can be attributed to the conversion of bytecodes
into source code. In this context, all of the evaluated tools
supported APK analysis. A possible explanation for this is
analyzing APKs helps tools cater to wider audience: APK
developers and APK users (i.e., app stores and end users).

3) Malicious Behavior Detection Tools: TABLE IV reports
the results of evaluating malicious behavior detection tools.
Unlike vulnerability detection tools, the results from malicious



TABLE III: RESULTS FROM EVALUATING VULNERABILITY DETECTION TOOLS. THE NUMBER OF BENCHMARKS IN EACH CATEGORY IS MENTIONED IN
PARENTHESES. IN EACH CATEGORY, EMPTY CELL DENOTES THE TOOL IS INAPPLICABLE TO ANY OF THE BENCHMARKS, N DENOTES THE TOOL FLAGGED
BOTH BENIGN AND SECURE APPS AS NOT VULNERABLE IN EVERY BENCHMARK, X DENOTES THE TOOL FAILED TO PROCESS ANY OF THE BENCHMARKS,
AND D DENOTES THE TOOL FLAGGED BOTH BENIGN AND SECURE APPS AS VULNERABLE IN EVERY BENCHMARK. H/I/J/K DENOTES THE TOOL WAS
INAPPLICABLE TO H BENCHMARKS, FLAGGED BENIGN APP AS VULNERABLE AND SECURE APP AS NOT VULNERABLE IN I BENCHMARKS, FLAGGED BOTH
BENIGN AND SECURE APP AS NOT VULNERABLE IN J BENCHMARKS, AND REPORTED NON-EXISTENT VULNERABILITIES IN BENIGN OR SECURE APPS IN K
BENCHMARKS. THE NUMBER OF BENCHMARKS THAT A TOOL FAILED TO PROCESS IS MENTIONED IN SQUARE BRACKETS. THE NUMBER OF BENCHMARKS
IN WHICH BOTH BENIGN AND SECURE APPS WERE FLAGGED AS VULNERABLE IS MENTIONED IN CURLY BRACES. “-” DENOTES NOT APPLICABLE CASES.

Tool Crypto (4) ICC (16) Net (2) Perm (1) Store (6) Sys (4) Web (9) # Applicable Benign Secure Other

Benchmarks TP FN TN

Amandroid1 7/0/9/3 1/0/1/0 4/0/1/0 {1} 6/0/3/0 15 1 14 14 3
Amandroid2 X N 1/0/2/0 [3] X 5/0/0/0 [4] 30 0 3 3 0
Amandroid3 8/0/8/2 1/0/1/0 4/0/2/0 6/0/3/0 14 0 14 14 2
Amandroid4 13/0/3/2 3 0 3 3 2
Amandroid6 6/0/3/0 3 0 3 3 0
Amandroid7 0/2/2/0 4 2 2 4 0
AndroBugs N 0/2/14/3 N 0/1/0/0 N 0/4/0/0 0/4/5/1 42 11 31 42 4
AppCritique 0/2/2/0 N N N 0/3/3/0 N 0/2/7/0 42 7 35 42 0
COVERT N N N N N N 33 0 33 33 0
DialDroid N N 1/0/1/0 N N N 8/0/1/0 33 0 33 0 0
DevKnox 0/1/3/0 N N N N D N 42 5 37 38 0
FlowDroid N N N 24 0 24 24 0
HornDroid N 0/1/15/7 N 0/0/6/1 0/0/9/1 37 1 36 37 9
JAADS1 N 0/2/14/0 N N N N 0/4/5/1 42 6 36 42 1
JAADS2 N 0/2/14/0 N N N N 0/4/5/1 42 6 36 42 1
MalloDroid X 5/0/1/0 [3] 4 0 1 1 0
Marvin-SA 0/1/3/0 0/5/11/3 N 0/1/0/0 0/0/6/2 0/4/0/0 0/4/5/0 42 15 27 42 5
MobSF 0/1/3/0 0/5/11/0 N 0/1/0/1 0/1/5/0 0/4/0/0 0/3/6/0 42 15 27 42 1
QARK1 N 0/3/13/0 N 0/1/0/0 N 0/4/0/0 0/2/7/0 42 10 32 42 0
QARK2 N 0/3/13/0 N 0/1/0/0 N 0/4/0/0 0/2/7/0 42 10 32 42 0

# Undetected 1 5 2 0 2 0 2

behavior detection tools are homogeneous and concerning.
Recall that 33 benchmarks in Ghera are composed of two

apps: a malicious apps that exploits a benign app. So, while
malicious apps in Ghera are indeed malicious, 3 out of 5 tools
did not detect malicious behavior in any of the malicious apps.
VirusTotal flagged all of the malicious apps as potentially
unwanted programs (PUPs), which is not the same as being
malicious; it is more akin to flagging a malicious app as non-
malicious. NVISO ApkScan flagged one half of the apps as
PUPs and the other half as non-malicious. In short, all of the
malicious behavior detection tools failed to detect any of the
malicious behaviors in Ghera benchmarks.

Since AndroTotal, NVISO ApkScan, and VirusTotal rely
on antivirus scanners to detect malicious behavior, the results
suggest the malicious behaviors captured in Ghera bench-
marks will likely go undetected by antivirus scanners. Also,
since HickWall, Maldrolyzer, and NVISO ApkScan rely on
static and/or dynamic analysis to detect malicious behavior,
the results suggest static and dynamic analyses used in these
tools are ineffective in detecting malicious behaviors captured
in Ghera benchmarks.

E. Threats to Validity

While we tried to execute the tools using all possible options
but with minimum or no extra configuration, we may not have
considered options or combinations of options that could result
in more true positives and true negatives. The same is true of
extra configuration required by certain tools, e.g., providing
custom list of sources and sink to FlowDroid.

Our personal preferences for IDEs (e.g., Android Studio
over Eclipse) and flavors of analysis (e.g., static analysis over
dynamic analysis) could have biased how we diagnosed issues
encountered while building and setting up tools. This could
have affected the selection (rejection) of tools and the reported
set up times.

We have taken utmost care in using the tools, collecting their
outputs, and analyzing their verdicts. However, our bias along
with commission errors (e.g., incorrect tool use) and omission
errors (e.g., missed data) could have affected the evaluation.

All of the above threats can be overcome by having this
evaluation repeated by different experimenters with different
biases and preferences than us and comparing their observa-
tions with our observations as documented in this manuscript
and the artifacts repository (see Section VI).

Our observations are based on the evaluation of 19 security
analysis tools. While this is a reasonably large set of tools, it
may not be representative of the population of security analysis
tools, e.g., it does not include commercial tools. So, the above
observations should be considered only in the context of tools
similar to the evaluated tools. More exploration should be
performed before generalizing the observations to other tools.

F. Interaction with Tool Developers

By end of June 2017, we had completed a preliminary
round of evaluation of QARK and AndroBugs. Since we were
surprised by the low detection rate of both tools, we contacted
both teams with our results and the corresponding responses
were very different.



TABLE IV: RESULTS FROM EVALUATING MALICIOUS BEHAVIOR DETECTION TOOLS. THE NUMBER OF BENCHMARKS IN EACH CATEGORY IS MENTIONED
IN PARENTHESES. X/Y/Z DENOTES THE TOOL FAILED TO PROCESS X BENCHMARKS, DEEMED Y BENCHMARKS AS PUPS, AND FAILED TO FLAG Z
BENCHMARKS AS MALICIOUS.

Tool Crypto (4) ICC (16) Net (1) Perm (1) Sys (4) Store (6) Web (1) # PUP # FN

AndroTotal 0/0/4 0/0/16 0/0/1 0/0/1 0/0/4 0/0/6 0/0/1 0 33
HickWall 0/0/4 0/0/16 0/0/1 0/0/1 0/0/4 0/0/6 0/0/1 0 33
Maldrolyzer 0/0/4 0/0/16 0/0/1 0/0/1 0/0/4 0/0/6 0/0/1 0 33
NVISO ApkScan 0/0/4 0/9/7 0/1/0 0/1/0 0/0/4 0/4/2 0/1/0 16 17
VirusTotal 0/4/0 0/16/0 0/1/0 0/1/0 0/4/0 0/6/0 0/1/0 33 0

QARK team acknowledged our study and reverted back to
us with a new version of their tool after two months. We
evaluated this new version of QARK. While the previous
version of the tool flagged 3 benchmarks as vulnerable,
the new version flagged 10 benchmarks as vulnerable. The
evaluation reported in this manuscript uses this new version
of QARK.

AndroBugs team pointed out that the original version of
their tool was not available on GitHub; hence, we were not
using the original version of AndroBugs in our evaluation.
When we requested the original version of the tool, the team
did not respond.

After these interactions, we decided not to communicate
with tool developers until the evaluation was complete. The
rationale for this decision was to make the evaluation fair
by evaluating the tools as publicly available without being
influenced by this evaluation.

G. Why did this evaluation take one year?
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Between February and May 2018, we designed and per-

formed experiments to measure the representativeness of
Ghera benchmarks. Remote location of Androzoo, sequential

downloading of apps from Androzoo, processing of 339K
apps, and repetition of the experiment due to automation errors
contributed to prolonging this exercise.

V. RELATED WORK

Android security has generated considerable interest in the
past few years. This is evident by the sheer number of research
efforts exploring Android security. Sufatrio et al. summarized
such efforts by creating a taxonomy of existing techniques to
secure the Android ecosystem [1]. They distilled the state of
the art in Android security research and identified potential
future research directions. While their effort assessed existing
techniques theoretically on the merit of reported details and
results, we evaluated existing tools empirically by executing
them against a common set of benchmarks. So, these efforts
are complementary.

In 2016, Reaves et al. systematized Android security re-
search that analyzes applications by considering Android app
analysis tools that were published in 17 top venues since 2010
[3]. Also, they empirically evaluated the usability and applica-
bility of results of 7 Android app analysis tools. In contrast, our
evaluation considered 19 tools that detected vulnerabilities and
malicious behaviors. They used benchmarks from DroidBench
[51], 6 vulnerable real world apps, and top 10 financial
apps from Google Play store. While DroidBench benchmarks
and vulnerable real world apps were authentic (i.e., they did
contain vulnerabilities), this was not the case with the financial
apps. In contrast, all of the 42 Ghera benchmarks used in
our evaluation were synthetic but authentic. Further, while
DroidBench focuses on ICC related vulnerabilities and use of
taint analysis for vulnerability detection, Ghera is agnostic to
the underlying techniques and contains vulnerabilities related
to ICC and other aspects of Android platform. While Reaves
et al. focused usability of tools (i.e., how well does the tool
work in practice?), our evaluation focused on more on the
effectiveness of tools in detecting known vulnerabilities and
malicious behavior and less on the usability of tools. Even
with these differences, the effort by Reaves et al. is the most
closely related to this evaluation.

Sadhegi et al. conducted an exhaustive literature review
of the use of program analysis techniques to address issues
related to Android security [4]. They identified trends, patterns,
and gaps in existing literature along with the challenges and
opportunities for future research. In comparison, our evalua-
tion also exposes gaps in existing tools. However, it does so



empirically while being agnostic to techniques underlying the
tools, i.e., not limited to program analysis.

Zhou et al. conducted a systematic study of the installation,
activation, and payloads of 1260 malware samples collected
from August 2010 thru 2011 [52]. They characterized the
behavior and evolution of malware. In contrast, our evaluation
is focused on the ability of tools to detect vulnerable and
malicious behaviors.

VI. EVALUATION ARTIFACTS

The code and input data used in the evaluation of
representativeness of Ghera benchmarks are available at
ANONYMIZED along with the output data from the eval-
uation and the instructions to repeat the evaluation.

A copy of specific versions of offline tools used in tools
evaluation are available at ANONYMIZED along with tool
output from the evaluation. Specifically, vulevals and secevals
folders contain artifacts from the evaluation of vulnerability
detection tools using benign apps and secure apps from Ghera,
respectively. malevals folder contains artifacts from the eval-
uation of malicious behavior detection tools using malicious
apps from Ghera. The repository also contains the automation
scripts used in the evaluation along with the instructions to
repeat the evaluation.

VII. FUTURE WORK

Here are few ways to extend this effort to help the Android
developer community.

1) Evaluate paid security analysis tools by partnering with
tool vendors, e.g., AppRay [37], IBM AppScan [53],
Klocwork [54].

2) Evaluate freely available Android security analysis tools
that have not been considered in this tools evaluation,
e.g., ConDroid [36], Sparta [41], StaDyna [43].

3) Explore different modes and configurations of evaluated
tools (e.g., Amandroid) to evaluate their effect on the
accuracy of verdicts.

4) Extend tools evaluation to consider any new lean and fat
(vulnerable real-world apps) benchmarks added to Ghera
repository.

5) Create and maintain an online dashboard based on results
from tools evaluation. Also, publish resulting artifacts via
a public repository. This can help app developers identify
security tools that are well suited to check their apps
for vulnerabilities and tool developers assess how well
their tools fare against both known (regression) and new
vulnerabilities and exploits.

VIII. SUMMARY

When we started this evaluation, we were expecting many
security analysis tools would detect many of the vulnerabilities
considered in the evaluation. The rationale for our expectation
was the vulnerabilities were known a priori and there have
been explosion of efforts in recent year to develop tools and
techniques for Android app security analysis.

After our evaluation, we observed that most of the tools
and techniques are able to detect only a small fraction of
the vulnerabilities considered in the evaluation. Further, all
tools put together were unable to detect all of the considered
vulnerabilities.

These observations suggest that, if current and new security
analysis tools and techniques are to be helpful in building
secure Android apps, then we need to ensure these tools and
techniques are effective in detecting vulnerabilities, starting
with known vulnerabilities. One way to achieve this is by
building an open free public corpus of known vulnerabilities
in verifiable and demonstrable form and using the corpus
to evaluate the effectiveness of security analysis tools and
techniques.
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APPENDIX

In this catalog, we briefly describe the 42 vulnerabilities
(along with their canonical references) captured in Ghera that
were used in this evaluation. Few vulnerabilities have generic
references as they were discovered by Ghera authors while
reading the security guidelines available as part of Android
documentation [55]. Please refer to [5] for details about the
repository and the initial set of vulnerabilities.
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A. Crypto

Crypto APIs enable Android apps to encrypt, decrypt infor-
mation, and manage cryptographic keys.

C1 The result of encrypting a message twice using Block
Cipher algorithm in ECB mode is the message itself.
So, apps using Block Cipher algorithm in ECB mode
(explicitly or due to default on Android platform) can leak
information [56].

C2 Encryption using Block Cipher algorithm in CBC mode
with a constant Initialization Vector (IV) can be broken
by recovering the constant IV using plain text attack. So,
apps using such encryption can leak information [56].

C3 Password based encryption (PBE) uses a salt to generate
password based encryption key. If the salt is constant, the
encryption key can be recovered with knowledge about
the password. Hence, apps using PBE with constant salt
can leak information [56].

C4 Cipher APIs rely on unique keys to encrypt information. If
such keys are embedded in the app’s code, then attackers
can recover such keys from the app’s code. Hence, such
apps are susceptible to both information leak and data
injection [56].

B. Inter Component Communication (ICC)

Android apps are composed of four basic kinds of com-
ponents: 1) Activity components display the user interface,
2) Service components perform background operations, 3)
Broadcast Receiver components receive event notifications and
act on those notifications, and 4) Content Provider components
manage app data. Communication between components in an
app and in different apps (e.g., to perform specific actions,
share information) is facilitated via exchange of Intents. Com-
ponents specify their ability to process specific kinds of intents
by using intent-filters.

I1 Android apps can dynamically register broadcast receivers
at runtime. Such receivers are automatically exported with-
out any access restrictions and, hence, can be accessed via
ICC and exploited to perform unintended actions [57].

I2 A component can use a pending intent to allow another
component to perform an action on its behalf. When a
pending intent is empty (i.e., does not specify an action), it
can be seeded (via interception) with an unintended action
to be executed on behalf of originating component [58].

I3 To perform an action (e.g., send email), users choose an
activity/app from a list of activities ordered by priority. By
using appropriate priorities, activities can gain unintended
privilege over other activities [57].

I4 Implicit intents are processed by any qualifying service
determined by intent filters as opposed to a specific ex-
plicitly named service. In case of multiple qualifying
services, the service with the highest priority processes the
intent. By registering appropriate intent filters and by using
appropriate priorities, services can gain unintended access
to implicit intents [57].
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I5 Pending intents can contain implicit intents. Hence, ser-
vices processing of the implicit intent contained in a
pending intent are vulnerable as in I4 [58].

I6 Apps can use path-permissions to control access to
data exposed by content provider. These permissions con-
trol access to a folder and not to its subfolders/descendants
and their contents. Incorrectly assuming the extent of these
permissions can lead to information leak (read) and data
injection (write) [55].

I7 Components that process implicit intents are by default
exported without any access restrictions. If such a compo-
nent processes intents without verifying their authenticity
(e.g., source) and handles sensitive information or performs
sensitive operations in response to implicit intents, then it
can leak information or perform unintended actions [57].

I8 Broadcast receivers registered for system intents (e.g., low
memory) from Android platform are by default exported
without any access restrictions. If such a receiver services
intents without verifying the authenticity of intents (e.g.,
requested action), then it may be vulnerable like the
components in I7 [57].

I9 Broadcast receivers respond to ordered broadcasts in the
order of priority. By using appropriate priorities, receivers
can modify such broadcasts to perform unintended actions
[57].

I10 Sticky broadcast intents are delivered to every registered
receiver and saved in the system to be delivered to receivers
that register in the future. When such an intent is re-
broadcasted with modification, it replaces the saved intent
in the system. This can lead to information leak and data
injection [57].

I11 Every activity is launched in a task, a collection (stack) of
activities. An activity can declare its affinity to be started
in a specific task under certain conditions. When the user
navigates away from an activity X via the back button, the
activity below X on X’s task is displayed. This behavior
along with task affinity and specific start order — malicious
activity started before benign activity — can be used to
mount a phishing attack [59].

I12 When an activity from a task in the background (i.e.,
none of its activities are being displayed) is resumed, the
activity at the top of the task (and not the resumed activity)
is displayed. This behavior along with task affinity and
specific start order — malicious activity started after benign
activity — can be used to mount a phishing attack [59].

I13 When a launcher activity is started, its task is created and
it is added as the first activity of the task. If the task of a
launcher activity already exists with other activities in it,
then its task is brought to the foreground but the launcher
activity is not started. This behavior along with task affinity
and specific start order — malicious activity started before
benign activity — can be used to mount a phishing attack
[59].

I14 In addition to declaring task affinity, an activity can
request that it be moved to the affine task when the task
is created or moved to the foreground (known as task

reparenting). This behavior along with task affinity and
specific start order — malicious activity started before
benign activity — can be used to mount a denial-of-service
or a phishing attack [59].

I15 Apps can request permission to perform privileged opera-
tions (e.g., send SMS) and offer interfaces (e.g., broadcast
receiver) thru which these privileged operations can be
triggered. Unless appropriately protected, these interfaces
can be exploited to perform operation without sufficient
permissions [57].

I16 The call method of Content Provider API can be used
to invoke any provider-defined method. With a reference
to a content provider, this method can be invoked without
any restriction leading to both information leak and data
injection [60].

C. Networking

Networking APIs allow Android apps to communicate over
the network via multiple protocols.
N1 Apps can open server sockets to listen to connections from

clients; typically, remote servers. If such sockets are not
appropriately protected, then they can lead to information
leak and data injection [61].

N2 Apps can communicate with remote servers via insecure
TCP/IP connections. Such scenarios are susceptible to
MitM attacks [61].

D. Permissions

In addition to system-defined permissions, Android apps can
create and use custom permissions. These permissions can
be combined with the available four protection levels (i.e.,
normal, dangerous, signature, signatureOrSystem) to control
access to various features and services.
P1 Permissions with normal protection level are automatically

granted to requesting apps during installation. Conse-
quently, any component or its interface protected by such
“normal” permissions will be accessible to every installed
app [62].

E. Storage

Android provides two basic options to store app data.
1) Internal Storage is best suited to store files private to

apps. Every time an app is uninstalled, its internal storage
is purged. Starting with Android 7.0 (API 24), files stored
in internal storage cannot be shared with and accessed by
other apps [55].

2) External Storage is best suited to store files that are
to be shared with other apps or persisted even after an
app is uninstalled. While public directories are accessible
by all apps, app-specific directories are accessible only
by corresponding apps or other apps with appropriate
permission [55].

S1 Files stored in public directories on external storage can be
accessed by an app with appropriate permission to access
external storage. This aspect can be used to tamper data
via data injection [55].



S2 The same aspect from S1 can lead to information leak
[55].

S3 Apps can accept paths to files in the external storage from
external sources and use them without sanitizing them.
A well-crafted file path can be used to read, write, or
execute files in the app’s private directory on external
storage (directory traversal attack) [63].

S4 Apps can copy data from internal storage to external
storage. This could lead to information leak if such apps
accept input from untrusted sources to determine the data
to be copied [64].

S5 SQLiteDatabase.rawQuery() method can be used
by apps to serve data queries. If such uses rely on external
inputs and use non-parameterized SQL queries, then they
are susceptible to sql injection attacks [65].

S6 Content Provider API support selectionArgs param-
eter in various data access operations to separate selection
criteria and selection parameters. App that do not use this
parameter are be susceptible to sql injection attacks [65].

F. System

System APIs enable Android apps access low level features
of the Android platform like process management, thread
management, runtime permissions, etc.

Every Android app runs in its own process with a unique
Process ID (PID) and a User ID (UID). All components in an
app run in the same process. A permission can be granted to an
app at installation time or at run time. All components inherit
the permissions granted to the containing app at installation
time. If a component in an app is protected by a permission,
only components that have been granted this permission can
communicate with the protected component.
Y1 During IPC, checkCallingOrSelfPermission

method can be used to check if the calling/caller process
or the called process has permission P. If a component
with permission P uses this method to check if the calling
component has permission P, then improper use of this
method can leak privilege when the calling component
does not have permission P [66].

Y2 checkPermission method can be used to check if the
given permission is allowed for the given PID and UID
pair. getCallingPID and getCallingUID methods
of Binder API can be used to retrieve the PID and UID
of the calling process. In certain situations, they return
PID/UID of the called process. So, improper use of these
methods by a called component with given permission can
leak privilege [66].

Y3 During IPC, enforceCallingOrSelfPermission
method can be used to check if the calling/caller process or
the called process has permission P. Like in Y1, improper
use of this method can leak privilege [66].

Y4 enforcePermission method can be used to check if
the given permission is allowed for the given PID and
UID pair. Like in Y2, improper use of this method along
with getCallingPID and getCallingUID can leak
privilege [66].

G. Web

Web APIs allow Android apps to interact with web servers
both with and without SSL/TLS, display web content through
WebView widget, and control navigation between web pages
via WebViewClient class.

W1 Apps connecting to remote servers via HTTP (as opposed
to HTTPS) are susceptible to information theft via Man-
in-the-Middle (MitM) attacks [67].

W2 Apps can employ HostnameVerifier interface to
perform custom checks on host name when using
SSL/TLS for secure communication. If these checks are
incorrect, apps can end up connecting to malicious servers
and be targets of malicious actions [67].

W3 In secure communication, apps employ TrustManager
interface to check the validity and trustworthiness of
presented certificates. Like in W2, if these checks are
incorrect, apps can end up trusting certificates from
malicious servers and be targets of malicious actions [67].

W4 Intents can be embedded in URIs. Apps that do not handle
such intents safely (e.g., check intended app) can leak
information [68].

W5 Web pages can access information local to the device
(e.g., GPS location). Apps that allow such access without
explicit user permission can leak information [69].

W6 When WebView is used to display web content,
JavaScript code executed as part of the web content is
executed with the permissions of the host app. Without
proper checks, malicious JavaScript code can get access
to the app’s resources e.g. private files [70].

W7 When loading content over a secure connection via
WebView, host app is notified of SSL errors via
WebViewClient. Apps ignoring such errors can enable
MitM attacks [67].

W8 When a web resource (e.g., CSS file) is loaded
in WebView, the load request can be validated
in shouldInterceptRequest method of
WebViewClient. Apps failing to validate such
requests can allow loading of malicious content [70].

W9 When a web page is loaded into WebView,
the load request can be validated in
shouldOverridUrlLoading method of
WebViewClient. Apps failing to validate such
requests can allow loading of malicious content [70].
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