
Automatic code generation for LYE, a high-performance caching SOAP
implementation

Venkatesh Prasad Ranganath Andrew King Daniel Andresen
Department of Computing and Information Sciences

Kansas State University
234 Nichols Hall, Manhattan KS, 66506, USA

Abstract

In this paper, we present our experience in automating
the XML schema driven serialization approach within the
Apache Axis 1 and Axis 2 SOAP frameworks. We have gen-
eralized our previous template based approach to serializa-
tion [7] as a generic XML schema driven serialization ap-
proach and realized the generic approach via two stylisti-
cally different and non-intrusive implementation strategies.
We illustrate the benefits of our approach – performance
improvements of up to 89% with low memory overhead –
by empirically comparing it with the Java Bean based ap-
proaches employed in Apache Axis 1 and Axis 2.

KEY WORDS: SOAP, distributed computing, eCom-
merce, network protocols

1. Introduction

Service-oriented architectures (SOAs) have become a
critical new technology for eCommerce, high-performance
computing, and the Computational Grid. In response to the
need for a standard to support web services, SOAP has be-
come the standard binding for the emerging Web Services
Description Language (WSDL) [8, 9]. SOAP is based on
XML [2] and thus achieves high interoperability when it
comes to exchange of information in a distributed comput-
ing environment. While carrying the advantages that accrue
with XML, it has several disadvantages that restrict its us-
age. SOAP calls have a large overhead due to the consid-
erable execution time required to process XML messages.
In this paper, we partially mitigate a primary shortcoming
of SOAP: its speed of execution. We do this by automat-
ing the XML schema driven serialization approach within
the Apache Axis 1 and Axis 2 SOAP frameworks. Specif-
ically, we generalize our previous template based approach
to serialization [7] as a generic XML schema driven serial-

ization approach and realize the approach via two stylisti-
cally different and non-intrusive implementation strategies.
Both approaches yield substantial improvements over the
existing implementation.

An overview of SOAP along with the associated practi-
cal concerns and efforts are presented in Section 2. In the
following section, we provide an details about Apache Axis
1 and Axis 2. Details about the XML schema driven ap-
proach and its implementation in Axis frameworks is dis-
cussed in Section 4. A comparative and empirical evalua-
tion of our approach is provided in Section 5. We conclude
the paper in Section 7 following an exposition about possi-
ble extensions of our current effort in Section 6.

2. Background

2.1. Overview of SOAP

Simple Object Access Protocol (SOAP) defines a stan-
dard packaging format for transmitting XML data between
applications on a network. The protocol is designed to carry
the data (payload) to be transmitted wrapped in metadata
(envelope) relavent to data transmission (routing), access
(security), etc. Further, SOAP is leveraged by Java API for
XML-based RPC (JAX-RPC) to enable XML based remote
procedure call (RPC) in Java.

SOAP-based RPC can be viewed to be composed of
messages and services. A message is composed of a enve-
lope and a payload. A service is an endpoint that accepts
a request, processes the request, and returns a response. In
terms of RPC, the services can be percieved as the RPC
modules that expose various operations/procedures, the in-
coming messages can be perceived as requests containing
the procedure name along with arguments, and the outgo-
ing messages can be perceived as responses containing the
return values from the remote procedure call. Typically, a
SOAP engine (such as Apache Axis) waits for SOAP re-
quest messages, deserializes and decodes the SOAP enve-
lope in the request message, routes the payload to the ap-



propriate service, deserializes the payload, executes the ser-
vice with the payload data, serializes the result data from
the service into the response payload, embeds the response
payload in a SOAP response message, and uses the network
transport to transmit the SOAP response message back to
the client.

The information that identifies the services and the of-
fered operations and describes the structure of parame-
ters and return value of the offered operations is described
via the XML-based Web Services Description Language
(WSDL) in a web service descriptor.

2.2. Concerns

The reliance on XML to encode the objects and op-
erations makes SOAP an ideal protocol to connect het-
erogeneous systems implemented in different program-
ming languages, built using different software frameworks,
and/or based on different application level network pro-
tocols. However, as indicated by various studies [3, 5, 4],
the reliance on XML makes SOAP-based RPC ineffi-
cient in comparison with other distributed computing solu-
tions such as Java RMI and CORBA.

As SOAP messages are XML based, they need to be
encoded as text. Although this is beneficial, Bustamante
et.al [3] observed that there is a dramatic difference in the
amount of encoding necessary for transmitting data in XML
form as opposed to being binary encoding like in CORBA.

Kohlhoff et.al [6] state that XML related performance
cost is insufficient to explain SOAPs poor performance.
SOAP message compression was an attempt to optimize
SOAP that was later discarded as the cost of compression
and decompression annulled the benefits. In the same ef-
fort, compact XML tags were used to reduce the length of
the XML tag names. This had negligible improvement on
encoding, which suggests that the major cost of the XML
encoding and decoding is in the structural complexity and
syntactic elements, rather than message data.

Orthogonally, in our previous efforts [1, 7], we observed
that caching could improve the encoding phase of message
serialization in the context of SOAP-based RPC and provide
upto 250-600% improvement in sample applications. Fur-
ther, we observed that serialization could be optimized by
leveraging the message type structure information embed-
ded in the web service descriptor to precompute the skele-
ton of the message [7]. We shall discuss this approach in de-
tail in the rest of this paper.

3. Apache Axis

The Axis project from Apache foundation provides Axis
1 and Axis 2, two versions of Java-based SOAP implemen-
tations. As we have used these implementations in experi-

ments and to realize our techniques, we shall provide a brief
overview of these two versions of Axis followed by a de-
tailed exposition about our techniques and how they are re-
alized in Axis.

3.1. Axis 1

The Axis 1 distribution contains three main parts. The
first part is the server side framework for SOAP based web
services (region (a) in Figure 1). The second part is the
SOAP engine (region (b) in Figure 1), which interacts with
the server side code (Target in Figure 1) and web clients that
use SOAP based RPC. The third part is a collection of util-
ity programs that aid web service authors to automatically
generate code skeletons for the SOAP methods described
in WSDL and to automate the publishing of the web ser-
vice onto an Axis 1 server. Our techniques are applicable to
the Axis 1 SOAP engine.

Pivot

Deserializer
request
message

Serializer
response
message

(b)(a)
Target

Figure 1. Server-side control flow in Axis.

Axis 1 provides a serialization pipeline along with
a collection of serializers that are capable of seri-
alizing instances of Java classes that implement the
java.lang.Serializable interface into a XML
fragment. This pipeline serializes the object result-
ing from the target. The distribution contains serializers
for values of primitive data types available in the Java pro-
gramming language. The serialization of any plain old
Java objects occurring in the object resulting from the tar-
get is handled by the generic BeanSerializer by
leveraging Java reflection mechanism.

More specifically, the BeanSerializer recur-
sively visits each object reachable from the result object
(data) and, at each object, the serializer uses Java Re-
flection API to retrieve the type (class) of the object to
learn the type of member objects and decide the serializa-
tion strategy for these member objects. During this pro-
cess, the BeanSerializer also attempts to collect any
schema information, such as namespaces, occurrence con-
straints, etc, corresponding to the object types and use it
in serialization. After every object reachble from the re-
sult object has been visited and serialized, the message is
handed over to the server side framework (region (a) in Fig-
ure 1), which then transmits the message to the client.



In Axis 1, developers can control (de)serializers used
to (de)serialize various types used in web services, hence,
customize the (de)serialization process. This is enabled via
the Axis 1 specific Web Service Deployment Descriptor
(WSDD)1 used to deploy web services into an Axis 1 server.

3.2. Axis 2

The overall architecture of Axis 2 is similar to that of
Axis 1 except for Axis 2’s reliance on AxiOM to serialize
and deserialize Java objects. AxiOM (Axis Object Model) is
a set of Java classes that can be used to represent the struc-
ture and contents of an XML document in the form of a ob-
ject tree. These classes also provide features to manipulate
the XML document represented by the object tree.

Upon processing a web service descriptor, the
WSDL2Java provided by Axis 2 generates Java source
code for the serializers and deserializers of the com-
plex types defined in the descriptor. These (de)serializers
can then be compiled and used at runtime by seamlessly de-
ploying them into Axis 2 server.

In contrast to Axis 1 serialization pipeline, the Axis 2
serialization pipeline does not serialize the result object
from the service. Instead, the serialization pipeline recur-
sively visits the reachable objects and constructs an hierar-
chical Object Model (OM) Tree (similar to the Document
Object Model (DOM)) that corresponds to the structure of
the XML representation (inclusive of the XML tags) of the
result object. This object tree is subsequently serialized by
the server side framework (region (a) in Figure 1) before
transmitting the message to the client. Succinctly, the seri-
alization pipeline in Axis 1 provides the XML representa-
tion of the result object in string form while the pipeline in
Axis 2 provides the XML representation in OM tree form.

The OM tree has a serialize method that is in-
voked to serialize the represented XML document into a
string. Similar to the serialization process in Axis 1, the
serialize method traverses the OM tree to generate the
string representation of the XML fragment represented by
each node of the tree. Like Axis 1, Axis 2 also provides the
facility to plug in custom (de)serializers that can build an
OM tree.

3.3. Overhead

Despite the fixed message structure for a method of a
web service, the Axis 1 serialization pipeline rediscovers
the structure of the result object for each response mes-
sage. This is compounded by the use of Java Reflection
facility to determine the members of the object type for

1 We use the term “descriptor” to imply web service descriptor and not
web service deployment descriptor.

purposes of visiting the reachable objects. Such repeated
reflection-based introspection unnecessarily contributes to
the response time of applications, such as airline reserva-
tion systems, where the shape of the response remains con-
stant for a given method. In addition, the repeated concate-
nation of XML tags contributes to the cost of serialization.

Both of the above mentioned overheads apply to Axis
2 as well. Furtherore, the Axis 2 serialization pipeline vis-
its the objects reachable from the result object while con-
structing the OM tree and performs a similar traversal while
serializing the OM tree. In applications involving high fre-
quency requests and/or large results, the extra traversal can
degrade the performance of the SOAP server. Also, given
the high cost of object allocation, the creation of an ob-
ject during the construction of the OM tree will further con-
tribute to the degradation of performance.

4. XML Schema Driven Message Serializa-
tion

The type information embedded in XML schemas is
used by XML (de)serialization frameworks (Castor, JiBX,
XStream, etc) to automatically generate (de)serializers that
can convert XML fragments into Java objects and vice
versa. As seen in Figure 4, XML schema fragments that
describe various XML types used in messages by a SOAP
service are embedded in the corresponding web service de-
scriptor. Hence, in our earlier effort [7], we proposed an ap-
proach to generate serializers from these XML schema frag-
ments in the context of SOAP services. Recently, we auto-
mated our approach by implementing generators of serial-
izers that are readily pluggable into Axis 1. In this section,
we shall describe our implementation along with its vari-
ations and how our approach differs from the default ap-
proach available in Axis 1 and Axis 2.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="SampleService">
<types>

<schema>
<complexType name="ComplexObject">

<sequence>
<element name="varFloat" type="xsd:float"/>
<element name="varInt" type="xsd:int"/>
<element name="varString" type="xsd:string"/>

</sequence>
</complexType>

</schema>
</types>

</definitions>

Figure 2. Sample descriptor containing the
XML schema corresponding to a type com-
posed of float, integer, and string



4.1. Implementation

Typically, an Axis 1 based web service developer obtains
or writes a web service descriptor in WSDL and feeds it to
WSDL2Java utility program to generate code skeleton for
the service. The developer then adds appropriate business
logic to the code skeleton, compiles the code, and publishes
the new web service by using AdminClient utility.

In an attempt to keep the application of our approach
simple, we implemented a new tool named WSDL2Ser
that processes web service descriptors and generates cus-
tom serializers in Java. Given the similarity of the tools,
we imagine that our implementation can be integrated into
WSDL2Java.

In our implementation, the serialization logic accepts the
result object as input and generates the XML representa-
tion of the result object in string form. Hence, the generated
serializers can replace the BeanSerializers in Axis 1
framework. As the Axis 2 framework provides a result ob-
ject to the serializer and expects an OM tree as the result
of serialization, the Axis 1compatible serializers cannot be
used as-is with Axis 2. Instead, we need to introduce a thin
Axis 2compliant serializer S2 that accepts the result object
and uses it to construct and return an Axis 1 compatible se-
rializer S1 conforming to the OM tree interface. Hence, with
minor adaptations, our approach is applicable to both Axis
1 and Axis 2. At the time of writing this paper, we are still
realizing generators for Axis 2. However, we expect the re-
sults in the context of Axis 2 will be similar to those in the
context of Axis 1.

4.2. Variations

The WSDL2Ser program reads the web service descrip-
tor that generates a class for the each message type in the de-
scriptor. The generated class confirms to the API as required
by Axis 1 (Axis 2) framework. The serialization method in
the class contains a template of the message in its string
form. The method also contains the logic to traverse the ob-
ject to be serialized, collect values, and instantiate the tem-
plate based on the collected values.

We have implemented two variations of serializers: tem-
plate engine based serializers and pure Java based serializ-
ers.

4.2.1. Template Engine based Serialization A template
engine (such as FreeMarker2 or Velocity3) provides the fa-
cility to define and instantiate a template. Template engines
enable developers to focus on realizing the structure of the
content instead of focusing on the logic required to realize

2 http://www.freemarker.org
3 http://jakarta.apache.org/velocity

the structure. Further, they add a layer of abstraction that en-
ables optimizations to the engine to be easily absorbed by
client applications.

Driven by the above advantages, we employed the Ve-
locity template engine to realize the template engine based
variation of our approach. Given a web service descriptor,
WSDL2Ser outputs two artifacts: 1) a velocity template that
captures the structure of message type in its string form and
2) a Java serializer class that loads the generated template
and exercises the template engine at runtime to serialize a
result object.

The generated velocity template and the corresponding
Java serializer class for the descriptor in Figure 4 are given
in Figures 4.2.1 and 4.2.1, respectively. The compile time
concretization of XML tags as string constants in the tem-
plate enables the template engine to splice consecutive tags
to reduce the number of string concatenation operations re-
quired during serialization. More importantly, direct access
to components of the result object via getter methods (Fig-
ure 4.2.1) (instead of via reflection) contributes to a large
reduction of the serialization time.

<multiRef id="${multiRefid}" ${soapencprefix}:root="0"
soapenv:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
${xsiprefix}:type="${complexprefix}:ComplexObject"
xmlns:${soapencprefix}="${soapencuri}"
xmlns:${complexprefix}="${complexuri}">

<varFloat ${xsiprefix}:type="${xsdprefix}:float">
${varFloat_Value}

</varFloat>
<varInt ${xsiprefix}:type="${xsdprefix}:int">

${varInt_Value}
</varInt>
<varString ${xsiprefix}:type="${xsdprefix}:string">

${varString_Value}
</varString>

</multiRef>

Figure 3. Auto-generated Velocity Template
corresponding to the XML Schema in Fig-
ure 4

4.2.2. Pure Java based Serialization Despite the bene-
fits, template engine based serialization entails the cost of
exercising the template engine. Hence, if the structure of the
message type is simple then it is faster to use features and li-
braries native to the Java programming language to realize
serialization.

In the second variation of our approach, we par-
tially evaluate the process of instantiating the template
by considering the template to be instantiated as a con-
stant. Hence, the resulting serializer (Figure 4.2.2) is
merely a sequence of append calls on an instance of
java.lang.StringBuffer class interspersed with



private String serializeObj(ComplexObject temp) {
StringWriter writer = new StringWriter();
vtlContext.put("varFloat_Value",

Boolean.toString(temp.getvarFloat()));
vtlContext.put("varInt_Value",

Double.toString(temp.getvarInt()));
vtlContext.put("varString_Value",

Integer.toString(temp.getvarString()));
vtlTemplate.merge(vtlContext, writer);
return writer.toString();

}

Figure 4. Auto-generated Template-based se-
rializer corresponding to the template in Fig-
ure 4

calls to the getter methods of the result object. The ben-
efits of the template based variation also apply to this
variation along with the additional benefits of avoid-
ing the cost associated with exercising the template en-
gine.

4.3. Comparison

During serialization in Axis 1 and Axis 2, a significant
amount of time is spent to determine the fields of the ob-
jects constituting the result object and how to build the mes-
sage based on the type of the objects. Further, the creation
of helper objects (such as Attribute lists (in Axis 1) and
the OM TreeNodes (in Axis 2) contribute to the serializa-
tion costs in Axis 1 and Axis 2, respectively.

These extra costs are avoided in the XML schema driven
serialization approach. As the structure of the message is
encoded into the serializers at compile time (compiling the
serializers from the XML schema), the generated serializer
does not discover the message structure or create helper ob-
jects during serialization. Hence, the cost of serialization is
reduced in terms of time and memory.

In addition, the number of runtime string concatenations
is also minimized in the proposed approach as consecutive
static parts (tags) of the XML fragment are concatenated at
compile time.

5. Experiments

We have validated the benefits of our approaches by mea-
suring and comparing the time taken to convert a Java ob-
ject (the response from the target) into an valid XML frag-
ment that can be embedded into a XML SOAP response
message.

5.1. Setup

In our experiments, we considered the default serializa-
tion approach supported by Axis 1 (version 1.3) and Axis

2 (version 0.94) along with the template based and Java
StringBuffer based variants of the XML schema driven ap-
proach. The two versions of Axis used were the latest re-
leases available at the time of this writing. Each of the pro-
posed approaches were exercised with four SOAP services
that differed in the complexity of the structure of the re-
sponse: 1) Simple service returned an integer value, 2) Tu-
ple service returned a tuple object containing a string value,
an integer value, a boolean value, and a long value, 3) Ar-
ray service returned an array of 100 string values, and 4)
Complex service returned a complex object composed of
an array of 100 string values, an array of 100 integer val-
ues, and four tuple values (described previously). The first
two services were designed to represent applications such
as stock tickers and sportscasts while the others were de-
signed to represent weather applets and involved business
applications that involve large data transfer.

In each experiment, the SOAP server was set up to exer-
cise a particular serialization approach. The client sequen-
tially issued identical requests for the same SOAP service
to the server. Both the client and the server were co-located
on a 3.06 GHz Windows XP computer equipped with 1GB
of RAM, and were executed on top of Sun’s JVM version
1.5.0 03-b07. Sun’s Java performance measurement pack-
age sun.misc.perf was used to collect timing data.

5.2. Results

The data from the experiments are provided in Table 5.2
and Figure 6. For each SOAP service type, we used Axis 1
as the baseline to measure the relative improvement of per-
formance.

The Schema driven approaches resulted in better overall
performance and relative improvement for all four SOAP
service types. Java String based Schema driven approach
provided the best performance (55-89% improvement in
comparison with Axis 1) as the conversion of the Java re-
sult object to its SOAP conformant string representation
was partially evaluated. The realization of the residual con-
version operations via simple features of the Java language
and runtime library also contributed to the improved per-
formance. Although the template based Schema driven ap-
proach performed better than the default approaches avail-
able in Axis 1 and Axis 2, the overhead induced by the
genericity of a template library resulted in slightly larger
serialization times compared with the Java String based
Schema driven approach. Despite this fact, the template
based Schema driven approach performed 15-87% better
than the default message serialization approaches available
in Axis 1.

Independent of the type of SOAP services, the bean-
based serialization technique employed in Axis 1 performed
better than the XMLBeans-based serialization technique



private String serializeObj(ComplexObject temp){
StringBuffer result_buffer = new StringBuffer();
//now misc XML info
String multiRefid = "id0";
String xsiprefix = context.getPrefixForURI("http://www.w3.org/2001/XMLSchema-instance");
String xsdprefix = context.getPrefixForURI("http://www.w3.org/2001/XMLSchema");
String soapencprefix = context.getPrefixForURI("http://schemas.xmlsoap.org/soap/encoding/");
String complexprefix = context.getPrefixForURI("http://service.timeTest");
String soapencuri = "http://schemas.xmlsoap.org/soap/encoding/";
String complexuri = "http://service.timeTest";
//now the tags, "the bookends"
String item_tag_start = "<item>";
String item_tag_end = "</item>\n";
StringBuffer varFloat_tag_start = new StringBuffer()

.append("<varFloat ").append(xsiprefix).append(":type=\"").append(xsdprefix).append(":float\">");
StringBuffer varFloat_tag_end = new StringBuffer("</varFloat>\n");
StringBuffer varInt_tag_start = new StringBuffer()

.append("<varInt ").append(xsiprefix).append(":type=\"").append(xsdprefix).append(":int\">");
StringBuffer varInt_tag_end = new StringBuffer("</varInt>\n");
StringBuffer varString_tag_start = new StringBuffer()

.append("<varString ").append(xsiprefix).append(":type=\"").append(xsdprefix).append(":string\">");
StringBuffer varString_tag_end = new StringBuffer("</varString>\n");
StringBuffer type_header = new StringBuffer().append("<multiRef id=\"").append(soapencprefix)

.append(":root=\"0\" ").append("soapenv:encodingStyle=\"http://schemas.xmlsoap.org/soap/encoding/\" ")

.append(xsiprefix).append(":type=\"").append(complexprefix).append("ComplexObject\"").append("xmlns:")

.append(complexprefix).append("=\"").append(complexuri).append("\">\n");
StringBuffer msg = type_header.append(varFloat_tag_start).append(temp.getvarFloat()).append(varFloat_tag_end)

.append(varInt_tag_start).append(temp.getvarInt()).append(varInt_tag_end)

.append(varString_tag_start).append(temp.getvarString()).append(varString_tag_end)

.append("</multiRef>\n");
return msg.toString();

}

Figure 5. Auto-generated pure Java based Serializer corresponding to the XML Schema in Figure 4

Simple Tuple Array Complex
Axis 1 (Bean) 72.17 (0) 100.02 (0) 2272.29 (0) 4030.7 (0)

Template 57.01 (21) 85.33 (14.69) 292.99 (87.11) 1188.16 (70.52)
Java string 26.1 (63.84) 45.11 (54.9) 245.83 (89.18) 754.81 (81.27)

Axis 2 (XMLBeans) 946.85 (-1212) 1015.01 (-914.77) 3276.99 (-44.22) 4428.65 (-9.87)

Table 1. Time spent in serialization in milliseconds for 1000 requests. The relative performance im-
provement over Axis 1 is provided within parenthesis.

used in Axis 2. Interestingly, the performance of the seri-
alization technique used in Axis 2 was comparable to that
used in Axis 1 when the complexity of the structure of the
SOAP message increased in terms of the cardinality of com-
position and frequency of the elements of the same type.

6. Future Work

We plan to integrate and contribute the proposed ap-
proaches to the main code base of Apache Axis 1 and Axis
2. WSDL2Ser generates serializers that can plug directly
into Axis 1. The same approach can be applied to gener-
ating Axis 2 serializers. However, Axis 2 does not support
message serialization at the same logical point as in Axis 1.
More specifically, in Axis 2, the serializer generates an OM
tree and passes it to the Axis 2 engine to be rendered as a

string.
We also plan to extend WSDL2Ser to generate serializ-

ers that can handle messages containing multirefs and
recursive data types.

Finally, we plan to conduct experiments to evalu-
ate the combined benefits of the proposed schema driven
approaches and caching techniques proposed in our ear-
lier work [1, 7]. Further, it would be an interesting
task to adapt the proposed approaches to be applica-
ble to the XSD-conformant XML serialization prob-
lem.

7. Conclusion

In this paper, we validate our previous claim [7] that
SOAP message serializers can be automatically synthesized



0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

Simple Tuple Array Complex

Message Type

S
ys

te
m

 T
ic

ks
 (

10
00

 r
eq

u
es

ts
)

Axis1/Bean

Axis2/XMLBEANS

Template

Fast Append

Figure 6. Serialization techniques vs. Message type

by leveraging the structure of various data types defined (via
XML Schema) in SOAP service descriptors. In addition to
the template based serialization technique, we introduce a
trivial yet faster serialization technique based merely on the
features of java.lang.StringBuffer class available
in the Java runtime library. We empirically illustrate the pro-
posed techniques perform up to 89% better than the default
techniques employed in Apache Axis 1 and Axis 2.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under the award numbers
CCR-0082667 and ACS-0092839. Any opinions, findings,
and conclusions or recommendations expressed in this pub-
lication are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation.

References

[1] D. Andresen, D. Saxton, K. Devaram, and V. P. Ranganath.
LYE: A High Performance Caching SOAP Implementation.
In Proceedings of the 2004 International Conference on Par-
allel Processing (ICPP-2004), pages 143–150, August 2004.

[2] T. Bray, J. Paoli, and C. Sperberg-McQueen. Exten-
sible Markup Language (XML) 1.0. W3C, Feb. 1998.
http://www.w3.org/TR/1998/REC-xml-19980210.

[3] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener.
Efficient wire formats for high performance computing. In
Proceedings of Supercomputing 2000, pages 64–64, 2000.

[4] K. Chiu, M. Govindaraju, and R. Bramley. Investigating the
limits of SOAP performance for scientific computing. In

Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 2002
(HPDC’02), page 246. IEEE Computer Society, 2002.

[5] D. Davis and M. Parashar. Latency performance of SOAP im-
plementations. In Proceedings of the 2nd IEEE/ACM Interna-
tional Symposium on Cluster Computing and the Grid, pages
407–412, 2002.

[6] C. Kohlhoff and R. Steele. Evaluating SOAP for high perfor-
mance business applications: Real-time trading systems. In
Proceedings of WWW2003, Budapest, Hungary, 2003.

[7] V. P. Ranganath, D. Saxton, and D. Andresen. LYE: high per-
formance SOAP with multi-level caching. In Proceedings of
the IASTED International Conference on Parallel and Dis-
tributed Computing and Systems, PDCS 2004, pages 743–748.
IASTED, November 2004.

[8] Simple object access protocol (soap) 1.1, Feb. 2003.
http://www.w3.org/TR/SOAP/.

[9] Web Services Description Language (WSDL), 2001.
http://www.w3.org/TR/wsdl.


