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ABSTRACT
Security of mobile apps affects the security of their users. This has
fueled the development of techniques to automatically detect vul-
nerabilities in mobile apps and help developers secure their apps;
specifically, in the context of Android platform due to openness and
ubiquitousness of the platform. Despite a slew of research efforts
in this space, there is no comprehensive repository of up-to-date
and lean benchmarks that contain most of the known Android
app vulnerabilities and, consequently, can be used to rigorously
evaluate both existing and new vulnerability detection techniques
and help developers learn about Android app vulnerabilities. In
this paper, we describe Ghera, an open source repository of bench-
marks that capture 25 known vulnerabilities in Android apps (as
pairs of exploited/benign and exploiting/malicious apps). We also
present desirable characteristics of vulnerability benchmarks and
repositories that we uncovered while creating Ghera.
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1 INTRODUCTION
1.1 Motivation
With increased use of mobile devices (including mobile phones),
mobile apps play a pivotal role in our lives. They have access to and
use huge amounts of sensitive and personal data to enable various
services banking, shopping, social networking, and even two-step
authorization. Hence, security of mobile devices and apps is crucial
to guarantee the security and safety of their users.

This observation is further amplified on the Android platform
as it is widely adopted by both consumers (users) and developers
– Android has captured 88% of the global market share as of third
quarter of 2016 [3] and Google Play, the official store for Android
apps, has 2.8 million apps as of March 2017 [22].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PROMISE, November 8, 2017, Toronto, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5305-2/17/11. . . $15.00
https://doi.org/10.1145/3127005.3127010

One approach to secure Android devices is to keep malicious
apps out of Android devices. This approach is supported by numer-
ous tools and techniques that detect malicious behaviors in apps
[14, 19, 23, 26, 27]. However, these techniques cannot detect every
malicious behavior. Further, malicious behaviors often depend on
vulnerabilities in the Android platform and the apps executed on
the platform.

Consequently, a complementary approach is to secure (harden)
Android apps. This approach is also supported by tools and tech-
niques to detect known vulnerabilities in apps (referred to as app
vulnerabilities) that stem from incorrect use of or bugs in Android
framework1 and can be used to carry out malicious actions such as
data theft.2

Like all automation-based approaches, this approach is useful
only if developers can trust the verdicts of the employed tools and
techniques. Such trust can be established only by rigorous and
reproducible evaluations of tools and techniques. By rigorous, we
mean the verdict of a technique can be verified to be true and to be
caused only by the reasons/explanations provided by the technique
(within the context considered in the evaluation). By reproducible,
we mean evaluations can be repeated to verify the reproduction of
(same) results.

Further, if such evaluations are based on a common baseline – a set
of benchmarks (apps)3 containing specific vulnerabilities, then their
results will be fair and comparable. By fair, wemean evaluationswill
not favor any specific technique. By comparable, wemean the results
from evaluations of different techniques can be compared (as the
evaluations are controlled for subjects). Consequently, developers
can use the results from such evaluations to easily compare and
select techniques based on aspects such as efficacy, efficiency/scale,
and ease-of-use. Also, a common baseline can simplify comparison
of future techniques with existing techniques and help make robust
claims about future techniques.

Another approach to secure Android apps is to educate developers
about securing apps. This approach is enabled by the extensive offi-
cial documentation provided by Google about security in Android
and the best practices for security and privacy in Android apps
[10, 11]. It is also enabled by documentation available in the form
of white papers, guides, and books about how to secure Android
apps [7, 12, 18]. Most of these resources provide code snippets (at
times, even apps) that showcase good practices to secure apps.

Despite the availability of such resources, Android apps still have
vulnerabilities [6, 17]. The presence of known vulnerabilities in apps

1Android framework is a set of APIs available to Android apps to interact with the
Android platform.
2This paper does not explore the application of this approach to harden the Android
platform.
3A benchmark is a standard or point of reference used for evaluation/comparison. So,
in this paper, we refer to an app that embodies a specific vulnerability X (along with
an app that exploits X) as a benchmark for X.
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can only stem from developer’s lack of knowledge about known
vulnerabilities, benefits of securing apps, or how security can easily
go awry. Like bad code examples are interspersed between good
code examples in programming books to highlight good practices
via contrasting, a way to help address such lack of knowledge is to
offer apps that showcase known vulnerabilities and demonstrate how
security can easily go awry. Such a repository of vulnerable apps
can also serve as an channel to learn about known vulnerabilities
in Android apps.

Finally, while there are numerous efforts to develop tools and
techniques to secure Android apps, there is no single benchmark
repository that captures most of the known vulnerabilities in An-
droid apps in a technique/tool agnostic manner.

1.2 Contributions
Motivated by above observations and the need of an ongoing effort
to assess existing vulnerability detection tools for Android, we cre-
atedGhera, an open source repository of vulnerability benchmarks4.
Currently, Ghera comprises 25 benchmarks. Each benchmark is a
pair of exploited/benign and exploiting/malicious apps that captures
a unique known vulnerability in Android apps. The benchmarks
span four areas of Android framework: Inter Component Communi-
cation (ICC), Storage, System, andWeb. Ghera is open sourced under
BSD 3-clause license and publicly available at http://bitbucket.org/
secure-it-i/android-app-vulnerability-benchmarks.

While creating these benchmarks, we found very little guidance
in the literature regarding how to create good benchmarks or the
desirable characteristics of good benchmarks. So, after creating the
benchmarks, we did a retrospection and identified various desirable
characteristics of vulnerability benchmarks, which are applicable
to benchmarks in general.

In this paper, we present Ghera in detail along with the desirable
characteristics of vulnerability benchmarks.

The remainder of the paper is organized as follows. Section 2
lists desirable characteristics of vulnerability benchmarks. It also
explores related work in the light of these characteristics. Section 3
describes Ghera in terms of its design choices, structure and content,
characteristics, and limitations. Section 4 lists future possibilities
with Ghera. Section A catalogs the vulnerabilities captured in Ghera.

2 DESIRABLE CHARACTERISTICS OF
VULNERABILITY BENCHMARKS

2.1 Context
When we started an effort to assess various vulnerability detec-
tion techniques, we searched for suites of tests or benchmarks to
fairly evaluate the techniques. We did not find such suites. Most
existing efforts used applications from app stores, e.g., Google Play.
While few efforts constructed small dedicated example apps, almost
all of the example apps were geared towards demonstrating the
associated techniques and did not explicitly capture known vulner-
abilities, e.g., DroidBench. Hence, we took a detour in our effort to

4We refer to a benchmark containing at least one vulnerability as a vulnerability
benchmark.

collect and catalog known Android app vulnerabilities in an informa-
tive and comprehensive repository to enable rigorous and reproducible
evaluation of vulnerability detection tools and techniques.

As we started collecting vulnerabilities, we searched for guid-
ance to create good benchmarks. To our surprise, while there were
numerous benchmarks, there was very little information about how
to design good benchmarks or even characteristics of a good bench-
mark. Hence, after we collected vulnerabilities, we did a retrospec-
tion to identify characteristics that we considered while collecting
vulnerabilities along with the reasons why we considered them.

2.2 Vulnerability Benchmark Characteristics
Here are the characteristics identified during our retrospection.
Besides describing the characteristics, we also describe how they
were influenced by existing efforts in the space of detecting vulner-
abilities in Android apps.

2.2.1 Tool and Technique Agnostic. The benchmark is agnostic
to tools and techniques and how they detect vulnerabilities. This
characteristic enables the use of benchmarks for fair evaluation and
comparison of tools and techniques.

We uncovered this characteristic when we explored DroidBench5,
one of the first benchmark suites created in the context of efforts fo-
cused on detecting vulnerabilities in Android apps [2]. DroidBench
is tailored to evaluate the effectiveness of taint-analysis6 tools to
detect information leaks in Android apps. So, the benchmarks are
geared towards testing the influence of various program structures
and various aspects of static analysis (e.g., field sensitivity, trade-
offs in access-path lengths) on the effectiveness of taint analysis to
detect information leaks (vulnerabilities). Further, it is unclear if
program structures considered in the benchmarks reflect program
structures that enable vulnerabilities in real world apps or program
structures that push the limits of static analysis techniques. Hence,
these benchmarks are not tool and technique agnostic.

In contrast, repositories such as AndroZoo7 [1] and PlayDrone8
[24] provide real world Android apps available in various app stores.
Further, the selection of apps is independent of their intended use by
any specific tool or technique. Hence, any vulnerable apps (bench-
marks) in these repositories are tool and technique agnostic.

2.2.2 Authentic. If the benchmark claims to contain vulnerability
X, then it truly contains vulnerability X. This characteristic enables
benchmarks to serve as ground truths when evaluating accuracy
of tools and techniques. Consequently, the comparison of tools and
techniques is simplified.

To appreciate this characteristic, consider the evaluation of Mal-
loDroid, a tool to detect the possibility of Man-in-the-Middle (MitM)
attacks on Android apps due to improper TLS/SSL certificate valida-
tion [8]. To evaluate the accuracy of MalloDroid, 13,500 apps were
analyzed using Mallodroid and 8% of them were flagged as poten-
tially vulnerable. However, since the potential vulnerability does
not imply the vulnerability can be exploited to steal information,
266 apps from Google Play were selected based on app categories
5https://github.com/secure-software-engineering/DroidBench
6Taint analysis identifies parts of the program affected (tainted) by specific data sources
such as user input.
7https://androzoo.uni.lu/
8https://github.com/nviennot/playdrone
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that are likely to be most affected by detected vulnerabilities. Of
these apps, 100 of the most popular apps were manually audited
and 41 of them were found to have exploitable vulnerabilities. Fur-
ther, not all aspects of apps were exercised during the evaluation.
This evaluation could have been simpler, easier, more complete,
and more accurate using authentic vulnerable benchmarks.

In terms of comparing tools and techniques, when EdgeMiner
[4] was compared to FlowDroid [2], 9 apps were flagged with vul-
nerabilities by EdgeMiner but not by FlowDroid. To verify this
outcome, the 9 flagged apps were analyzed using TaintDroid, yet
another tool, and 4 apps were flagged by TaintDroid. So, it was con-
cluded that EdgeMiner did better than FlowDroid in 4 cases. With
authentic benchmarks, the comparison would have been simpler
and extensive.

Of the various repositories we explored, AndroZoo provides
some evidence of malicious behavior (exploits) in apps in the form
of verdicts from running analysis tools on apps. However, no evi-
dence is provided about presence of vulnerabilities. Hence, these
benchmarks cannot be used authentic vulnerability benchmarks.
In contrast, the benchmarks in DroidBench are authentic as they
are seeded with vulnerability during construction.

2.2.3 Feature Specific. If the benchmark uses only features F of
a framework to create vulnerability X, then the benchmark does not
contain other features of the framework that can be used to create X.
This characteristic helps evaluate if tools and techniques can detect
vulnerabilities that stem only due to specific reasons (features). In
other words, it helps assess if and how the cause of a vulnerability
affects the ability of tools and techniques to detect the vulnerability.
Often, this could translate into being able to verify the explanations
provided by a tool when it detects X.

As discussed above, EdgeMiner detected 4 more vulnerable apps
than FlowDroid. However, there was no explanation for the better
performance of EdgeMiner in terms of features (causes) that EdgeM-
iner handled better than FlowDroid. Such explanations could have
been easily uncovered with feature specific benchmarks.

Often, real world apps serving as benchmarks (as in case of
AndroZoo and PlayDrone) lack this characteristic as the causes of
app vulnerabilities in them are most likely unknown to the public.
In contrast, benchmarks in repositories such as DroidBench exhibit
this characteristic as they are feature specific by construction.

2.2.4 Contextual. The benchmark capturing vulnerability X in
a context C is distinct from benchmarks capturing X in other con-
texts. This characteristic helps evaluate the efficacy of tools and
techniques to detect vulnerabilities in specific contexts, e.g., real
world scale, experimentation, use of specific libraries.

To understand this characteristic, consider the size of bench-
marks. While evaluating a tool (or a technique) to detect vulnera-
bilities, we can first evaluate it on lean benchmarks – A benchmark
containing vulnerability X that can be created by any of the features
F of a framework is lean if it makes minimal use of features of the
framework not in F – . Due to leanness, such benchmarks can speed
up the evaluation process and enable easy comprehension when
debugging/understanding the behavior of the tool. Further, such
benchmarks can be used as tests while building tools. When in
doubt, authenticity of such benchmarks can be easily verified with
manual effort. After such evaluations, we can consider fat (non-lean)

benchmarks to evaluate how the tool performs (scales) on larger
inputs. Hence, with contextual benchmarks, efficacy evaluations
can be more focused and streamlined.

In our explorations, we found tool evaluations that use both lean
and fat benchmarks [2, 25] and tool evaluations that use only fat
benchmarks [8, 15, 20]9. In comparison, establishing veracity of
tools was easier in former tool evaluations.

As for repositories, DroidBench offers custom apps as lean bench-
marks while AndroZoo and PlayDrone offer real world apps as fat
benchmarks.

Like size, connectivity, resource availability, complexity, number
of vulnerabilities in a benchmark, and number of kinds of vulnera-
bilities in a benchmark can be considered to identify useful contexts
when designing benchmarks.

2.2.5 Ready-to-Use. The benchmark is composed of artifacts that
can be used as is to reproduce the vulnerability. This characteristic
precludes the influence of external factors (e.g., interpretation of
instructions, developer skill) in realizing a benchmark, e.g., starting
from its textual description or skeletal form. Hence, it enables fair
evaluation and comparison of tools and techniques.

DroidBench, AndroZoo, and PlayDrone repositories provide
benchmarks as ready-to-use APKs (Android app bundles).

In comparison, SEI provides a set of guidelines for development
of secure Android apps [21]. The descriptions of many guidelines
are accompanied by illustrative good and bad code snippets. While
the code snippets are certainly helpful, they are not ready-to-use
in the above sense. This is also true of many security related code
snippets available as part of Android documentation.

2.2.6 Easy-to-Use. The benchmark is easy to set up and reproduce
the vulnerability. Benchmarks with this characteristic help expedite
evaluations. Consequently, this characteristic can help usher wider
adoption of the benchmarks. This characteristic is desirable of
benchmarks that require some assembling, e.g., build binaries from
source, extensive set up after installation.

As with ready-to-use characteristic, DroidBench, AndroZoo, and
PlayDrone cater binary benchmarks that are easy to install and
conduct evaluations. The source form of benchmarks provided by
DroidBench also have this characteristic as they contain Eclipse
project files required to build them.

2.2.7 Version Specific. The benchmark is associated only with the
versions of the framework in which the contained vulnerability can
be reproduced. With this characteristic, benchmarks can be chosen
for an evaluation based on the version of the framework being used
in the evaluation. Hence, it helps evaluations to be version specific.

To appreciate this characteristic, consider a vulnerability that
was affected by the rapid evolution of Android framework – evolved
from level (version) 1 thru 25 from 2008 to 2017. In 2011, when
the latest version of Android was 4.0.4, Chin et al. revealed that
a background service in an Android app could be hijacked by a
malicious app installed on the device if the service allowed clients
to start the service via an implicit intent [5]. Starting with Android
7.0 in 2016, the vulnerability was invalidated as starting of services
via implicit intent were prohibited.

9While lean benchmarks may have been used, such uses were not reported.
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Now, suppose an evaluation uses a benchmark that captures
this vulnerability but is not version specific. This can lead to two
undesirable situations. In the first situation, a tool targeting Android
7 apps will be flagged as incorrect when it (correctly) fails to detect
this vulnerability. In the second situation, a tool that detects the
vulnerability will be flagged as correct but it will incorrectly detect
non-existent vulnerabilities in Android 7 apps. Both these situations
can be avoided by using version specific benchmarks.

In terms of maintenance and keeping benchmarks current, ver-
sion specific benchmarks can be easily updated to reflect any changes
(such as end of life support) to associated versions of Android
framework/platform. This will prevent accidental evaluations of
benchmarks with unsupported versions of Android.

The benchmarks in AndroZoo, PlayDrone, and DroidBench are
not version specific as these benchmarks have no information about
compatible versions of Android framework/platform. Consequently,
DroidBench can enable a situation similar to that one described
above. Many Droidbench benchmarks use log files as information
sink. Such use was valid prior to Android 4.1 as every app on a
phone could read log files of any apps on the phone. However,
since Android 4.1, apps can read only their log files. Hence, these
benchmarks can lead to incorrect evaluations depending onAndroid
version being considered.

2.2.8 Well Documented. The benchmark is accompanied by rele-
vant documentation. Such documentation should contain descrip-
tion of the contained vulnerability and the features used to create
the vulnerability. It should also mention the target (compatible)
versions of the framework/platform and provide instructions to
both surface the vulnerability and exploit the vulnerability. When
possible, the source code of the benchmark should be included
as part of the documentation. This characteristic obviously helps
expedite evaluations that use the benchmarks and contributes to
ease of use of benchmarks. With source code, it can help developers
understand the vulnerability.

The benchmarks provided by DroidBench are in some ways well
documented as they contain source code along with binaries and
there is brief documentation on the web site and in the source code
about captured vulnerabilities. This is not the case with benchmarks
catered by AndroZoo and PlayDrone.

2.2.9 Dual. The benchmark contains both the vulnerability and
a corresponding exploit (dual). This characteristic simplifies evalua-
tions that depend on exercising the vulnerability, e.g., dynamic anal-
ysis. It allows benchmarks to be used to demonstrate vulnerabilities
and even evaluate exploits. Benchmarks with this characteristic can
help developers understand the vulnerability; specifically, when the
source code is available. Also, duality helps verify the authenticity
of benchmarks.

In our exploration, we did not find any dual benchmarks.

2.3 Vulnerability Benchmark Repository
Characteristics

Similar to the above benchmark characteristics, here are two desir-
able characteristics of vulnerability benchmark repositories.

2.3.1 Open. The benchmark repository should open to the commu-
nity both in terms of consumption and contribution. The benchmarks

should be available with minimal restrictions (e.g., permissive li-
cence) and preferably at no or very low cost to the community. The
repository should have a well-defined yet accessible process for
the community to contribute new benchmarks. This characteristic
helps with reproducibility of results and community wide consoli-
dation of benchmarks. The latter effect reduces duplication efforts
in the community.

In this regard, DroidBench is more open than AndroZoo and
PlayDrone repositories. DroidBench is hosted as a public repository
on GitHub and it welcomes contributions. PlayDrone is hosted
as multiple public archives on Internet Archive with no explicit
guidance for contributions. AndroZoo is hosted as a web service
that can be accessed only by approved users. This is most likely
to manage and track access to a large corpus of data in AndroZoo.
Like PlayDrone, there is no explicit guidance for contributions. This
may be due to how AndroZoo is populated – with real world apps
collected from different app stores.

2.3.2 Comprehensive. The benchmark repository should have
benchmarks that account for (almost) all known vulnerabilities of the
target framework/platform.This characteristic simplifies evaluations
as they can rely on a single repository (or very few repositories)
to consider all vulnerabilities. Further, evaluations can be more
thorough as they can consider most of the known vulnerabilities.

In our explorations, we did not find a single repository that cov-
ered almost all vulnerabilities in Android apps. While DroidBench
does a pretty good job covering information leak vulnerabilities
stemming from ICC, it does not cover information leaks due to other
reasons such as misuse of WebView component [13]. In terms of
evaluation, Reaves et al. [16] used DroidBench along with 6 mobile
money apps [17] and 10 most widely used financial apps in Google
Play to evaluate Android security analysis tools. While DroidBench
and 6 mobile money apps had certain known vulnerabilities, they
did not cover all kinds of vulnerabilities. With a comprehensive
repository, this evaluation could have been simpler and more thor-
ough.

2.4 Discussion
Reality Check. Of the above characteristics, some are easier to

achieve than others. For example, creating an open repository is eas-
ier than creating a comprehensive repository. Similarly, creating a
tool agnostic benchmark is easier than creating an authentic bench-
mark. Further, while it is desirable for benchmarks/repositories to
have all of the characteristics, it is hard to achieve them all as we
have seen in examples. Nevertheless, given the benefits of these
characteristics, we believe that the community should strive to
create benchmarks/repositories with these characteristics.

Wider Relevance. While we uncovered and described these char-
acteristics in the context of vulnerabilities, we believe they apply to
benchmarks in general; say, in other contexts such as performance.
For example, in the context of performance benchmarking, agnos-
tic characteristic can be restated as The benchmark is agnostic to
techniques and how they achieve performance.
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3 GHERA
We created Ghera, an Android app vulnerability benchmarks reposi-
tory, becausewe needed vulnerable benchmarks to evaluate existing
tools that aid in the development of secure Android apps. We ini-
tially explored existing repositories like DroidBench, AndroZoo,
and PlayDrone. Except for DroidBench, there was little to no infor-
mation about the presence and kind of vulnerabilities in apps from
these repositories. In case of DroidBench, the benchmarks/apps
were specific to information flow-based vulnerabilities.

So, our goals while creating Ghera were to ensure the bench-
marks contained unique Android app vulnerabilities and were tool
agnostic, easy to use, and well documented with source code. In ad-
dition, we wanted the repository to be open and as comprehensive
as possible.

3.1 Design Choices
Given our goals for the repository, we decided to group vulnerabili-
ties based on the features (capabilities) that cause the vulnerabilities.
To decide on the features that we wanted to explore, we looked at
features commonly used by Android apps and discussed in various
Android security related resources [5, 8, 9, 18]. Almost all Android
apps use one or more of the following capabilities:

• Communicate with components in apps installed on the
device.

• Store data on the device.
• Interact with the Android platform.
• Use web services.

Based on these capabilities, for the initial version of the reposi-
tory, we identified Inter Component Communication (ICC), Storage,
System, andWeb as the categories of vulnerabilities.

In each category, we identified APIs pertinent to that category
and studied them. To determine potential vulnerabilities stemming
from an API, we primarily explored prior research efforts, Stack
Overflow discussions, Android documentation, and the source code
in the Android Open Source Project (AOSP).10 When we uncovered
a potential vulnerability X related to the API, we developed an
app M with the vulnerability X along with an app N to exploit
vulnerability X in app M. We then verified the vulnerability by
executing apps M and N and checking if the vulnerability was
indeed exploited. This verification was carried out on Android
versions 4.4 thru 7.1.

We decided to name each benchmark based on the feature caus-
ing the vulnerability captured by the benchmark and the exploit
used to confirm the vulnerability. So, a benchmark is named as P_Q
when feature P causes the vulnerability that enables exploit Q.

3.2 Structure and Content
The repository contains top-level folders corresponding to various
categories of vulnerabilities: ICC, Storage, System, andWeb. We refer

10We explored public facing lists of vulnerabilities and exploits maintained by organi-
zations such as Mitre [6]. While these lists are useful to understand different kinds of
common vulnerabilities on a platform or a framework, they often lack details about
app vulnerabilities such as primary causes of a vulnerability or how to reproduce a
vulnerability. Also, many of these vulnerabilities do not have accompanying known
exploits. So, to quickly bootstrap the benchmark repository, we did not consider such
lists. However, since these lists serve as excellent starting points to create benchmarks
for app vulnerabilities, we are exploring them to expand the repository.

to these top-level folders as category folders. Each category folder
contains subfolders corresponding to different benchmarks. We
refer to these subfolders as benchmark folders. Each category folder
also contains a README file that briefly describes each benchmark
in the category.

There is one-to-one correspondence between benchmark folders
and benchmarks. Each benchmark folder is named as P_Q where P
is the specific feature that causes a vulnerability of interest and Q
is the exploit enabled by the vulnerability. Each benchmark folder
contains two app folders: Benign folder contains the source code of
an app that uses feature P to exhibit a vulnerability and Malicious
folder contains the source code of an app that exploits the vulner-
ability exhibited by the app in the Benign folder. A README file
in each benchmark folder summarizes the benchmark, describes
the contained vulnerability and the corresponding exploit, provides
instructions to build both Benign and Malicious apps (refer to Sec-
tion 3.3), and lists the versions of Android on which the benchmark
has been tested.

In case of Web category, benchmark folders do not contain a
Malicious folder in them because the captured vulnerabilities can
be exploited by Man-in-the-Middle (MitM) attacks. This requires
a web server that the Benign apps can connect to. Consequently,
code and instructions to set up local web server are provided in
a top-level folder named Misc/LocalServer. README file of each
Benign app contain instructions to configure the app to talk to the
local web server. As for the MitM attack in this set up, the users are
free to choose how to mount such an attack.

Currently, the repository contains 25 benchmarks, each captur-
ing a unique vulnerability. There are 13 ICC benchmarks, 2 Storage
benchmarks, 4 System benchmarks, and 6 Web benchmarks. The
smallest and the largest benchmarks contains 490 and 1510 lines
of code and configuration, respectively. In terms of bytes, Storage
benchmarks are larger as they rely on two external APK files of
size 13,144 KB in total. Table 1 provides basic size based statistics
about the benchmarks.

3.3 Work Flow
To illustrate the steps involved in using Ghera, we consider the
ICC/DynamicallyBroadcastReceiverRegistration-UnrestrictedAccess
benchmark. In this benchmark, the benign app dynamically reg-
isters a service with Android platform. This action exposes the
service to any app on the same device, including malicious apps.
Following are the instructions to use the benchmark to reproduce
and exploit this vulnerability.

(1) Execute the following commands to create an Android Vir-
tual Device (AVD) if an AVD does not already exist.

1 avdmanager list target
2 avdmanager list avd
3 avdmanager create avd -n <name> -k <target>

<name> should be an identifier not in the list of existing
AVD names displayed by the command in line 2. <target>
should be a target identifier of a system image listed by the
command in line 1.

(2) Start the emulator.
emulator -avd <name>

(3) Build Benign and Malicious apps and install them on to the
emulator using the following commands.
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Total Size (KB) Size of Text Files (KB) # Lines of Code+Config
Category Min Median Max Min Median Max Min Median Max

ICC 364 380 700 164 196 336 635 1182 1510
Storage 1,000 7,500 14,000 156 160 164 936 955 974
System 364 404 444 164 172 180 968 995.5 1035
Web 192 224 228 84 86 100 490 522 590

Table 1: Basic Source Code Size Statistics of Benchmarks in Ghera

cd Benign
./gradlew installDebug
cd ../Malicious
./gradlew installDebug

(4) In the emulator, launch Benign app followed by Malicious
app.

(5) Execute the following command.
adb logcat -d | grep "UserLeftBroadcastRecv"

If the exploit was successful, you should see a message "An
email will be sent to rookie@malicious.com with the text: I
can send email without any permissions".

The number of steps are few and they are simple. However, they
assume the user is familiar with Android development in terms of
various tools (e.g., virtual devices, emulators) used while developing
Android apps.

Further, instructions assume users will use these benchmarks
on emulators. If a user wants to use a benchmark on a device, then
she should skip step 2 and ensure an Android device is connected
to the development machine and configured as a device.

The workflow for every benchmark is similar to the above work-
flow barring minor changes associated with specific aspects of the
benchmark, if any.

3.4 What about characteristics?
While we identified the benchmark and repository characteristics
in retrospective, we believe it did influence the creation of Ghera
and its benchmarks. So, we will now examine if and why Ghera
and its benchmarks exhibits the identified characteristics.

The creation of each benchmark in Ghera focused on the spe-
cific features of Android framework and how it could lead to a
vulnerability. Based on this information, we created a Benign app
that exhibited the vulnerability. We tested the vulnerability in the
Benign app by using the Malicious app that exploited the vulnera-
bility in the Benign app. This process did not involve the use of any
vulnerability (or exploit) detection tools to confirm the presence
of the vulnerability. Hence, the benchmarks are tool and technique
agnostic.

As described above, for each benchmark, we tested the presence
of vulnerability in the Benign app by exploiting the vulnerabil-
ity via the Malicious app. As for Web apps, we used a local web
server with self-signed certificates and static HTML containing
malicious JavaScript code to exploit and verify the presence of the
vulnerability. Hence, the benchmarks are authentic.

When creating the Benign app of each benchmark capturing a
vulnerability X due to features F, we only used features F to create
X. Further, we made very little use of other features of Android

framework in the Benign app. Hence, we claim the benchmarks are
feature specific.

The benchmarks focus on reproducing vulnerabilities while be-
ing minimal in size and the features used from Android framework.
This observation is partially supported by the basic source code
size statistics of the benchmarks in Table 1. Hence, we claim the
benchmarks are contextual.

Every Ghera benchmarks come with instructions to build, install,
and execute its Benign and Malicious apps to exercise captured
vulnerabilities. Also, we have verified the instructions when testing
the benchmarks on different versions of Android. Further, the work
flow associated with each benchmark as illustrated in Section 3.3 is
short, mostly automated, simple, and easy. Hence, the benchmarks
are both ready-to-use and easy-to-use.

We tested each benchmark on different supported versions of
Android on emulators. Based on the success of reproducing the
vulnerabilities in these tests, we have documented the versions
of Android on which a benchmark reproduces the captured vul-
nerability. Hence, the benchmarks are version specific. Further, the
benchmarks cover all of the supported versions of Android.

Each benchmark is accompanied by documentation that de-
scribes the vulnerability and the associated exploit along with in-
structions to reproduce and exploit the vulnerability. In addition,
each benchmark is available in source form. Hence, the benchmarks
are well documented.

Since each benchmark (where possible) is composed of two apps:
one exhibiting the vulnerability and another exploiting the exhib-
ited vulnerability, the benchmarks exhibit the dual characteristic.

Ghera is hosted as a public repository that accepts contribution
from the community. Hence, it is an open repository.

While Ghera does have benchmarks covering four different areas
(capabilities) of Android framework, there are many more areas
of the Android framework that may be associated with known
vulnerabilities and are not covered by Ghera benchmarks. Hence,
Ghera is not yet a comprehensive repository.

3.5 Limitations & Threats to Validity
Currently, Ghera only caters lean benchmarks. Consequently, it
cannot be used to evaluate the scalability of vulnerability detection
tools, which would require fat benchmarks.

Ghera benchmarks currently capture 25 known vulnerabilities
while covering four areas of Android framework API: ICC, Stor-
age, System, and Web. However, sources such as CVE [6] sug-
gest vulnerabilities exists in other areas of the Android framework
(e.g., Networking, Camera) not covered by Ghera. Likewise, in the
four areas covered by Ghera, there may be known vulnerabilities
that are not captured by any Ghera benchmarks.
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In the previous section, we claimed Ghera benchmarks were
feature specific and contextual based on our diligent process of
creating benchmarks. However, our claim does not account for any
bias or oversight.

4 FUTUREWORK
Here are few possibilities to extend and use Ghera to help secure
Android apps.

(1) Add new benchmarks with vulnerabilities stemming from
ICC, System, Storage, and Web related Android framework
API but not present in existing benchmarks. Also, add new
benchmarks with vulnerabilities stemming from Android
APIs such as Networking and Camera that have not been con-
sidered by current benchmarks. These additions will make
the repository more comprehensive.

(2) Extend the repository with real world apps (or links to apps
in repositories such as AndroZoo) that have vulnerabilities
captured by existing benchmarks as new context-specific
benchmarks. These additions will help evaluate techniques
for scale.

(3) Extract code patterns from these benchmarks to identify
other instances of these benchmarks. These patterns can be
codified as IDE plugins to help developers avoid vulnerabili-
ties while coding apps. Also, these patterns could be used to
measure the prevalence of corresponding vulnerabilities in
real-world apps.

(4) Create benchmarks based on Android app vulnerabilities
listed on CVE [6]. These additions will help developers un-
derstand the reported vulnerabilities and explore solutions
to avoid them.

(5) Use these benchmarks to evaluate existing vulnerability anal-
ysis tools. Such an evaluation will help compare existing
tools and possibly provide hints to new possibilities such
as combining existing techniques to improve detection ac-
curacy. (We are currently pursuing such an evaluation of
existing tools.)

5 SUMMARY
While Android security has been the focus of research efforts in
the past few years, there are hardly any benchmarks to test and
evaluate vulnerability detection tools that help develop secure An-
droid apps. Our search for such benchmarks led us to create Ghera,
an open repository of vulnerability benchmarks (http://bitbucket.
org/secure-it-i/android-app-vulnerability-benchmarks). Currently,
Ghera captures 25 known vulnerabilities in Android apps spanning
four different capabilities of Android platform. We plan to extend it
and use it in an ongoing tools evaluation effort. We hope the com-
munity will use and contribute to Ghera to improve the evaluation
of Android app vulnerability detection tools and techniques.

During the creation of Ghera, we uncovered various desirable
characteristics of vulnerability benchmarks and benchmark reposi-
tories. Given the increasing interest in rigorous empirical evalua-
tion, we have documented these characteristics in the hope that it
can serve as guidance to create benchmarks to assist with rigorous
and reproducible evaluations.
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A CATALOG OF BENCHMARKS
In this section, we catalog the current benchmarks in Ghera accord-
ing to the vulnerability categories identified in Section 3.1. For each
benchmark, we provide a short description of the vulnerability and
the exploit that uses the vulnerability.

A.1 Inter Component Communication
Android apps are composed of four basic kinds of components: 1)
Activity components display the user interface, 2) Service compo-
nents perform background operations, 3) Broadcast Receiver compo-
nents receive event notifications and act on those notifications, and
4) Content Provider components manage app data. Communication
between components in an app and in different apps is facilitated
via exchange of Intents. Components specify their ability to process
specific kinds of intents by using intent-filters.

A.1.1 Dynamically registered broadcast receiver provides unre-
stricted access.

Vulnerability: When a broadcast receiver is dynamically regis-
tered with the Android platform, a non-null intent filter is provided.
As a result, the component is automatically exported to be accessible
from other apps, including malicious apps.

Exploit: A malicious app broadcasts a message to a dynamically
registered broadcast receiver. This triggers the broadcast receiver to
process the intent and unintentionally perform an action on behalf
of the malicious app.

A.1.2 Empty pending intent leaks privilege.

Vulnerability: An app X can allow another app Y to perform
an action on its behalf at a future time via a pending intent; these
intents are saved in the system. When no action is specified in
a pending intent, the recipient of the pending intent can set any
action and execute it in the context of the app that sent the pending
intent.

Exploit: A malicious app specifies its interest in the pending
intent via an intent-filter. Upon receiving an empty pending intent,
the malicious app associates a malicious action with the pending
intent. Conseuqently, when the pending intent is processed, the
malicious action will be executed in the context of app X.

A.1.3 Low priority activity prone to hijacking.

Vulnerability: A priority can be specified for an activity in the
app’s manifest file. When an activity is started, Android displays

all activities with the same intent-filter as a list to the user in the
order of priority (high to low).

Exploit: A malicious app registers an activity X with the same
intent-filter as that of an activity Y registered by a benign app
and with higher priority than Y. Consequently, the malicious app’s
activity X will be displayed before the benign app’s activity Y.

A.1.4 Service started by implicit intent is prone to hijacking.

Vulnerability: Android platform uses intent-filters to identify the
service to process implicit intents, i.e., intents dedicated to a class of
targets (as opposed to specific target). When multiple services have
the same intent-filter, the service with higher priority is chosen to
process corresponding intents.

Exploit: A malicious app has a service X with the same intent-
filter as that of the service Y in a benign app andwith higher priority
than Y. When an app requests the start of service Y by relying on
the intent-filter, service X in the malicious app will be started.

A.1.5 Implicit pending intent leaks information.

Vulnerability: A app X can create a pending intent containing
an implicit intent. When the pending intent is processed, the con-
taining implicit intent will be processed by a component identified
based on the intent-filter. When multiple components have the
same intent-filter, the component with higher priority is chosen to
process corresponding intents.

Exploit: A malicious app has a component X with an intent-filter
same as that of the component Y in the benign app and X has higher
priority than Y. So, component X is chosen (over component Y) to
process the implicit intent in the pending intent.

A.1.6 Content provider with inadequate path-permission leaks
information.

Vulnerability: An app can use path-permissions to control access
to the data exposed by a content provider. When an app protects a
folder by permissions, only the files in the folder are protected by
the permissions; none of the subfolders and their descendants are
protected by the permissions.

Exploit: A malicious app calls methods of a content provider to
access and modify sub-directories and contained files that are not
protected by path-permissions.

A.1.7 Apps have unrestricted access to Broadcast receivers regis-
tered for system events.

Vulnerability: When a Broadcast receiver registers to receive
(system) intents from the Android platform, it needs to be exported.
Consequently, it is accessible by any app without restrictions.

Exploit: A malicious app sends an intent to a broadcast receiver
that is registered to receive system intents and possibly forces it to
perform unintended operations.

A.1.8 Ordered broadcasts allow malicious data injection.

Vulnerability: When an ordered broadcast is sent, broadcast re-
ceivers respond to it in the order of priority. Broadcast receivers
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with higher priority respond first and forward it to receivers with
lower priority.

Exploit: A malicious receiver with high priority receives the
intent, changes it, and forwards it to lower priority receivers.

A.1.9 Sticky broadcasts are prone to leaking sensitive information
and malicious data injection.

Vulnerability: When a sticky broadcast message (intent) is sent, it
is delivered to every registered receiver and is saved in the system
to be provided to receivers that register for the message in the
future. When the message is re-broadcasted with modification, the
modified message replaces the original message in the system.

Exploit: A malicious broadcast receiver registers for the message
at later time and retrieves any sensitive information in the message.
Further, it can modify the contents of the message and re-broadcast
to provide incorrect information to future receivers of the message.

A.1.10 Task affinity makes an app vulnerable to phishing attacks.

Vulnerability: A task is a collection (stack) of activities. When an
activity is started, it is launched in a task. An activity can request
that it be started in a specific task. This is known as task affinity. The
task containing the displayed activity is moved to the background
if none of the activities in that task are being displayed. When any
activity from a task in the background is resumed, then the activity
at the top of the task (and not the resumed activity) is displayed.

Exploit: An activity X in a malicious app requests to start itself
in the same task as an activity Y in a benign app. When activity X
is at the top of the task, any call to activity Y will cause activity X
to be displayed to the user.

A.1.11 Task affinity and task re-parenting enables phishing and
denial-of-service.

Vulnerability: An activity can request to always be at the top
of a task. This is called task re-parenting. In such cases, when an
activity from that task resumed, activity at the top of the task will
be displayed to the user.

Exploit: An activity in a malicious app uses task affinity and task
re-parenting to supersede activities from other apps in a task and
launch a denial-of-service attack or a phishing attack.

A.1.12 Content Provider API allow unauthorized access.

Vulnerability: Content provider API provides a method call to
call any provider-defined method. With a reference to the content
provider, this method can be invoked without any restrictions.

Exploit: A malicious app uses call method to invoke content
provider methods to access the underlying data even when it does
not have specific permissions to access this data.

A.2 Storage
Android provides numerous options for storing application data. It
provides

(1) Internal Storage to store data that is private to apps. Every
time an application is uninstalled, its internal storage is emp-
tied. Starting fromAndroid 7.0, files stored in internal storage
cannot be shared with other apps.

(2) External Storage as a data storage area that is common to
apps. Its public partition is accessible to any app without any
restrictions. Its private partition is only accessible to apps
with a specific permission.

A.2.1 External storage allows data injection attack.

Vulnerability: Files stored in external storage can be modified
by an app with (appropriate) access to external storage.

Exploit: Amalicious app modifies external storage (e.g., add files)
and the content in external storage (e.g., change files).

A.2.2 Writing sensitive information to external storage enables
information leak.

Vulnerability: Files stored in external storage can be accessed by
an app with (appropriate) access to external storage.

Exploit: A malicious app reads content from external storage.

A.3 System
System APIs help Android apps access low level features of the
Android platform like process management, thread management,
runtime permissions etc.

Every Android app runs in its own process with a unique Process
ID (PID) and a User ID (UID). All components in an app run in the
same process. A permission can be granted to an app at installation
time or at run time. If an app is granted a specific permission at
installation time, then all components of the app are granted the
same permission. If component in an app is protected by a permis-
sion, only components that have been granted this permission can
communicate with the protected component. If the permission is
checked at runtime, then all components have to request for the
required permission.

A.3.1 checkCallingOrSelfPermission method leaks privilege.

Vulnerability: Before servicing a request, a component protected
by a permission uses checkCallingOrSelfPermission to check if
the requesting component has the permission. This method returns
true if the app containing the requesting component or the app con-
taining the protected component has the given permission. When
the app containing the protected component has the permission,
the method will always return true.

Exploit: A malicious app accesses a component that is protected
by permission P, is in an app that has permission P, and uses
checkCallingOrSelfPermission to check for permission.

A.3.2 checkPermission method leaks privilege.

Vulnerability: Before servicing a request, a component protected
by a permission uses checkPermission to check if the given PID



PROMISE, November 8, 2017, Toronto, Canada Mitra and Ranganath

and UID pair has the permission. Typically, getCallingPID and
getCallingUID methods of Binder API are used to retrieve PID
and UID, respectively. When these methods are invoked in the main
thread of an app, they return the IDs of the app and not the IDs of
the calling app.

Exploit: A malicious app accesses a component that is protected
by permission P, is in an app that has permission P, and uses
checkPermission to check for permission in the main thread of
the containing app.

A.3.3 enforceCallingOrSelfPermission method leaks privilege.

Vulnerability: Before servicing a request, a component protected
by a permission uses enforceCallingOrSelfPermission to check
if the requesting component has the permission. This method raises
SecurityException if the app containing the requesting compo-
nent or the app containing the protected component does not have
the given permission. When the app containing the protected com-
ponent has the permission, the method will complete without any
exceptions.

Exploit: A malicious app accesses a component that is protected
by permission P, is in an app that has permission P, and uses
enforceCallingOrSelfPermission to enforce the permission.

A.3.4 enforcePermission method leaks privilege.

Vulnerability: Before servicing a request, a component protected
by a permission uses enforcePermission to check if the given
PID and UID pair has the permission. Typically, getCallingPID
and getCallingUID methods of Binder API are used to retrieve
PID and UID, respectively. When these methods are invoked in the
main thread of an app, they return the IDs of the app and not the
IDs of the calling app.

Exploit: A malicious app accesses a component that is protected
by permission P, is in an app that has permission P, and uses
enforcePermission to enforce the permission in the main thread
of the containing app.

A.4 Web
Web APIs allow Android apps to interact with web servers both
insecurely and securely (via SSL/TLS), display web content through
WebView widget, and control navigation between web pages via
WebViewClient class.

A.4.1 Incorrect hostname verification enables Man-in-the-Middle
(MitM) attack.

Vulnerability: Android apps that use SSL/TLS for secure commu-
nication employ custom implementations of the HostnameVerifier
interface. Such implementations perform custom checks on the
given hostname in the verify method. When these custom checks
are incorrect or weak (e.g., does not check hostname), then apps
can end up connecting to malicious servers.

Exploit: An application takes advantage of incorrect/weak host-
name verification and mounts a MitM attack.

A.4.2 Incorrect trust validation enables Man-in-the-Middle at-
tack.

Vulnerability: An app uses custom implementation of the Trust-
Manager interface to check if the presented certificates are valid and
can be trusted. When these implementations are incorrect (e.g., an
empty stub implementation), unknown certificates may be trusted.

Exploit: An application takes advantage of incorrect trust valida-
tion and mounts a MitM attack.

A.4.3 Allowing execution of unverified JavaScript code in Web-
View exposes app’s resources.

Vulnerability: When an app uses WebView to display web content
and any JavaScript code embedded in the web content is executed,
the code is executed with the same permission as the WebView
instance used in the app.

Exploit: An app injects malicious JavaScript code into the web
content loaded in WebView, e.g., modify static web page stored on
the device.

A.4.4 Ignoring SSL errors in WebViewClient enables Man-in-the-
Middle (MitM) attack.

Vulnerability: When an app loads web content from a SSL con-
nection via WebView and is notified of an SSL error while loading
the content (via onReceivedSslErrormethod of WebViewClient),
the app ignores the error.

Exploit: An application takes advantage of ignored errors and
mounts a MitM attack.

A.4.5 Lack of validation of resource load requests in WebView
allows loading malicious content.

Vulnerability: When a resource (e.g., CSS file, JavaScript file)
is loaded in a web page in WebView, the app does not validate
the resource load request in shouldInterceptRequest method of
WebViewClient. Consequently, any resource will be loaded into
WebView.

Exploit: An application takes advantage of lack of validation of
resource load requests and mounts a MitM attack.

A.4.6 Lack of validation web page load requests in WebView
allows loading malicious content.

Vulnerability: When a web page is to be loaded into WebView,
the app does not validate the web page load request in
shouldOverridUrlLoading method of WebViewClient. Conse-
quently, any web page provided by the server will be loaded into
WebView.

Exploit: An application takes advantage of lack of validation of
web page load requests and mounts a MitM attack.
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