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ABSTRACT
Simple Object Access Protocol (SOAP) is a dominant en-
abling technology in the field of web services. Web ser-
vices demand high performance, security and extensibil-
ity. SOAP, being based on Extensible Markup Language
(XML), inherits not only the advantages of XML, but its
relatively poor performance. This makes SOAP a poor
choice for many high-performance web services.

In this paper, we present new approaches to leverage
multiple levels of caching and template-based customized
response generation in a SOAP server to improve perfor-
mance while maintaining complete protocol compliance.
We demonstrate its practicality by implementing a demon-
stration system under Linux that provided speedups of over
600% for sample applications.
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1 Introduction

Recently, there has been tremendous development in the
area of web services in eCommerce, high-performance
computing, and Computational Grid. In response to the
need for a standard to support web services, SOAP be-
came the standard binding for the emerging Web Services
Description Language (WSDL) [1, 2]. SOAP is based on
XML [3] and thus achieves high interoperability when it
comes to exchange of information in a distributed comput-
ing environment. While carrying the advantages that ac-
crue with XML, it has several disadvantages that restrict its
usage. SOAP calls have a large overhead due to the consid-
erable execution time required to process XML messages.
In this paper, we partially mitigate a primary negative of
SOAP: its speed of execution. We do this through the selec-
tive implementation of caching on the server side assuming
that a number of applications send the same information,
repetitively, in a structured form. Examples might include
“stock tickers,” game broadcasts, or airline ticket pricing.
Each of these is likely to send the same information multi-
ple times, yet the information is also continuously chang-
ing, so a simple reverse proxy cache [4] is inadequate. Fur-
thermore, we also note that the response format is fixed, so
we demonstrate how a customized response template can
(a) be automatically generated, and (b) show this can speed

up response generation by a very significant amount (over
300% in some test cases).

In our previous work, we implemented caching on
the client-side and server SOAP engines, and achieved
speedups of over 800% for the client and 70% for the
server compared with the standard Apache implementa-
tions [5, 6, 7].

In this paper, we optimize the server-side processing
of a SOAP request, achieving speedups of 2500% for struc-
tured datatypes and achieving at least a small optimization
for all “interesting” requests. In the following section, we
will discuss work related to optimizing SOAP. In Section 3
we shall present the caching and template-based serializa-
tion strategies in detail. Cost analysis and experimental re-
sults of the proposed strategies are presented in Section 4.
We conclude the paper with future work and summary of
our contributions.

2 Background

There have been several studies comparing SOAP with
other protocols, mainly binary protocols such as Java RMI
and CORBA. All of this research has proven that SOAP,
because of its reliance on XML, is inefficient compared to
its peers in distributed computing. In this section we exam-
ine studies [8, 9, 10] which explain where SOAPs slowness
originates and consider various attempts to optimize it.

In SOAP, objects are encoded in a structured form as
elements in an XML documents. This simplifies interop-
erability between various services that use different binary
formats to represents objects internally. However, as the
wire format is ASCII text-based, there is a cost associated
with encoding/serializing1 and decoding/deserializing the
objects to and from the wire format. Bustamante et.al. [8]
have shown that the cost of encoding/decoding of data as
text in XML is relatively high when compared to encod-
ing/decoding of data in a custom binary format as done
in Java RMI and CORBA (IIOP). They also observe that
ASCII encoded data incurs higher network-transmission
costs as it is larger than binary encoded data. Another rea-
son for SOAPs inefficiency is the relatively high number
of system calls required to send one logical message [9].
Some suggestions made in [9] include HTTP chunking and
binary XML encoding to optimize SOAP.

1We shall use the terms encoding and serializing interchangeably.



Extreme Lab at Indiana University developed an op-
timized version of SOAP, namely XSOAP [10]. Its study
of different stages of sending and receiving a SOAP call
has resulted in building up of a new XML parser that is
specialized for SOAP arrays, improving the deserialization
routines. This study employs HTTP 1.1, which supports
chunking and persistent connections.

Kohlhoff et.al. [11] state that XML is not sufficient
to explain SOAPs poor performance. SOAP message com-
pression was one attempt to optimize SOAP; it was later
discarded because CPU time spent in compression and de-
compression outweighed any benefits [11]. Another ap-
proach was to use compact XML tags to reduce the length
of the XML tag names. This had negligible improvement
on encoding, which suggests that the major cost of the
XML encoding and decoding is in the structural complexity
and syntactic elements, rather than message data [11].

O. Azim and A. K. Hamid [12] describe client-side
caching strategy for SOAP services using the Business Del-
egate and Cache Management design patterns.Each study
addressed pinpoints an area where SOAP is slow com-
pared to its alternatives.Some present optimized versions
of SOAP using such mechanisms as making compact XML
payload and binary encoding of XML. While said mech-
anisms achieved better efficiency, none could match Java
RMIs speed and simultaneously preserve compliance to the
SOAP standard.

In previous efforts, upon examination of the profile
data of an SOAP RPC client, it was found that, approxi-
mately 50% of the execution time is spent in XML encod-
ing and creating a HTTP connection[6]. Similar effort is
expended on the server-side to encode the response [7].

 

Figure 1. SOAP payload generated by SOAP RPC client.
Server responses are similar.

Comparing several such requests from the client, it
was found that the SOAP payloads differ only in the data
embedded in XML elements. In our example of airline
ticket pricing, the data embedded in elementsFrom and
To (Figure 1) change for each request. For each such re-
quest, the client has to prepare the SOAP payload and in
response the server has to prepare a similar SOAP payload

as well. In the due process, XML encoding takes up sig-
nificant amount of time at both ends of the communication.
Hence, reducing the time taken for XML encoding is a way
to improve performance.

3 Details

In this section we present a brief overview of Axis, an
apache implementation of SOAP, followed by description
of the strategy for caching and template-based serialization.

3.1 Apache Axis Overview

Axis [13] is a SOAP implementation available from
Apache. A bird’s eye view of control flow on the server-
side in Axis is illustrated in Figure 2. Upon reception of
a request message2 at the server, it is decoded/deserialized
into binary form. The request object (request3) then tra-
verses through achainof handlers. The handlers accept a
request and either return a modified request object that shall
traverse the chain further down or return a response object
(request4) that shall trigger the backtracking of the chain. A
handler that causes the backtracking of the chain is called
thepivot and it realizes the actual service-related function-
ality. In other words, the actual service logic occurs in the
pivot. When the response object reaches the beginning of
the chain, it is encoded/serialized by aserializer and the
response message is sent to the client.

(a)

(b)

Deserializermessage
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Serializermessage
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Pivot Service
Target
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Figure 2. Server-side control flow in Axis.

3.2 Caching

Based on the above architecture, we have identified two
locations in the control-flow at which caches can be placed
to improve performance under various circumstances. We
shall describe the intuition and the strategy the following
sub-sections.

3.2.1 Request Caching

In applications such as stock tickers and game broadcasts,
identical request messages to a service results in identical

2By request message we mean the SOAP part of the message.
3From hereon, we shall refer to the request object as “request”.
4From hereon, we shall refer to the response object as “response”.



response messages during a period of time independent of
the clients. In other words, for some applications, atime-to-
live (TTL)value can be associated with responses. Hence,
if the value of TTL is available at the time of service de-
ployment then it can be leveraged to enabling caching.

The strategy is to cache the response messages with
the request messages as the key to the cache. A response
message cache is installed at location (a) in Figure 2. Upon
reception of a request message, the cache consulted. If a
response message exists and the TTL of the service has not
expired, then the cached message is returned. If either the
cached response message exists but the TTL has expired or
there is no cached response message, the process to service
a request message as described in Section 3.1 is executed
and the returned response message is cached. In case of
cache hits, circumventing deserialization, chain traversal,
service invocation, and serialization improves service re-
sponse time, and in case of cache misses, a small overhead
of cache lookup is incurred.

Any request messages that may result in client spe-
cific response messages will contain client specific infor-
mation. Hence, the difference between similar request mes-
sages from different clients will ensure that a client will
always receive a cached response message targetted for it.
The simple strategy assumes a simple TTL cycle in which
the TTL period starts when the service is deployed and re-
peats itself till the service is undeployed with no changes
in between. For more interesting ttl cycles, the proposed
strategy will need more support from the service to keep
the cache “clean”.

As part of implementation, services can be deployed
into an Axis server viaWeb Service Deployment Descriptor
(WSDD). As the language used in this descriptor is exten-
sible, it is possible for the user to specify caching and the
TTL for a service via the WSDD. Hence, existing SOAP
services can utilize caching with minor changes to their de-
ployment descriptors.

3.2.2 Element Caching

The encoded form of a data value will be identical inde-
pendent of the service that generated it. Hence, if it is as-
sumed that all services use a general pool of serializers then
caching the encoded form of data values in the serializer
can improve performance.

In this strategy, each serializer provided with Axis is
extended with a cache (at location (b) in Figure 2). During
serialization, the cache is consulted. If the encoded form of
the given data value exists, the cached encoded form of the
data is returned. If not, the value is encoded, the encoded
form is cached, and it is returned as the result.

In contrast with the previous strategy, this strategy
can be employed in existing deployment of SOAP servers
with no change to the services. The caches are serializer-
specific and common across a server. Also, this strat-
egy applies well in situations where the response messages
change across each SOAP call.

3.3 Template-based Serialization

As in any protocol, the structure of the messages in SOAP
are fixed while describing the service via WSDL. More-
over, as SOAP uses XML to represent messages, each piece
of data in a message is represented in an XML element or
as an attribute of an XML element. Hence, a message in
it’s textual form contains text that imposes the structure on
the data (tags) and text that represents the actual data. Also,
the tags in a message do not change while the data changes.
In terms of template, the tags is the static part of a template
while the data is the dynamic part of a template. Hence, it
is be possible to use templates to generate the textual form
of messages or serialize data into a message.

Using templates to generate HTML/XML documents
on the fly is not novel. Java Server Pages (JSP) is a good ex-
ample in which the concept of templates has been used ex-
tensively. From the perspective of SOAP, Soaplet[14] pro-
vides a framework to generate SOAP requests using tem-
plates and extract data from SOAP responses using XPath.
Auto-generation of templates is also partially supported in
Soaplet.

In the light of optimization, we explored the use of
templates on server side to generate responses and its im-
plications. The basic idea is to process the WSDL speci-
fication and generate a template that can be used in a gen-
erated serializer to serialize the results of a service within
Apache SOAP framework. We hand coded templates and
serializers simulating a automated generator. In doing so,
we discovered the subtleties the generator would need to
handle and also the benefits of having such a generator.

<schema>
<complexType name="ComplexObject">

<sequence>
<element name="childObject" nillable="true"

type="tns1:ComplexObject"/>
<element name="intArray"

type="impl:ArrayOf_xsd_int"/>
<element name="intNum" type="xsd:int"/>

</sequence>
</complexType>

</schema>

XML schema

<co>
#if (${childObject1})
${childObject1}
#end
<intArray xsi:type="soapenc:Array"

soapenc:arrayType="xsd:string[${intArray.size()}">
#foreach ($item in ${intArray})

<item>$item</item>
#end
</intArray>
#end
<intNum xsi:type="xsd:double">\${intNum}</intNum>
</co>

Template

Figure 3. XML schema for a message and the generated
template.

Given a WSDL specification of the service, we can



determine the structure of the response messages based on
the corresponding schema definition. Figure 3 contains a
schema for a complex type and the template to generate
an instance of that type. Apache SOAP implementation
provides a WSDL-to-Java compiler. This compiler gener-
ates Java classes corresponding to the complex types used
in the messages in a WSDL file. The service implemen-
tation can then use instances of these classes as response
objects. As the structure of the response object to be se-
rialized is known, we can use this information to generate
a walker/visitor that walks/visits the containment hierarchy
of a particular language (Java) type and encode each ele-
ment in the hierarchy. These results of encoding fill partic-
ular holes in the generated template. Hence, the template
and the walker can be combined to realize a serializer in the
SOAP framework. As an implementation detail, Apache
SOAP implementation comes with a set of default serializ-
ers which are used unless specified otherwise via a WSDD.
The WSDD fragment to use a customized generator can
also be automatically generated.

As for the automation of this process, from our ex-
perience in translators, as most service artifacts draw from
WSDL and as WSDL specification is rich, we believe that
automation is possible. Although we did initially attempt to
implement such a generator, the sheer possibilities in XML
Schema proved to be overwhelming. However, the hand
coding experience proved to be rather simple and easy as
we better understood the implications of the possibilities
in XML Schema on the structures (not the values) of the
messages. Hence, we believe that further understanding of
these implications will simplify the implementation of the
generator.

The primary benefit of this approach is it decouples
the serialization of the message from the assembling of
the message data. This provides opportunity to optimize
the serialization process independently. Hence, server-side
performance can be improved by using a faster template
instantiation technique that draws from information avail-
able in WSDL or some other ancillary specification. We
have also found that while using this approach the perfor-
mance improves as the structure of the message becomes
more complex.

4 Experimental Results

In this section, we present a cost analysis for the strate-
gies to gain insight into the expected performance gains fol-
lowed by a description of the conducted experiments along
with the empirical data collected to verify the outcome of
the cost analysis.

4.1 Cost Analysis

In general, each request is deserialized into an object, the
object is passed as argument to a function invoked on the
service, and the response object is serialized. Letd, i, and
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Figure 4. Comparison of response times for simple objects.

sbe the time taken for these operations, respectively.
During serialization in Axis, each element in the

containment hierarchy of the response object is visited,
converted to a string (sstr), and appended to a serializa-
tion buffer (sapp). Even the tags of the element are ap-
pended to the buffer. However, we ignore their contri-
bution in the analysis as it a small constant for each ele-
ment. If n elements occur in the containment hierarchy,
then s = (sstr + sapp) × n. In short, the time taken
to respond to a request in the Apache SOAP server is
Tapache = d + i + (sstr + sapp) × n.

In case of services that return the same response for
a request repeated over a period time calledtime-to-live
(TTL), we can use request caching approach. Supposer
requests occur per second andtttl is the TTL in seconds.
Then,r× tttl calls occur intttl seconds. Of these calls, the
cost of the first call in the TTL interval will bet1 = d+ i+
(sstr + sapp)×n+ c wherec is the time taken to cache the
response in it’s serialized form. Subsequent,r×tttl−1 calls
will be serviced based on the cache, the cost for these calls
will be tj = l. Hence, the total cost to respond to each call
will be tRC = ((d+i+s+c)+((r×tttl−1)×l))/(r×tttl).
In other words, the time taken to respond to each message
reduces approximately by a factor of(r × tttl).

If sub-element caching is used, then the time taken
to generate the string representation of an element will be
l + pm × sstr wherel is the cache lookup time andpm is
the probability of a cache miss. Hence,TSC = d+ i+(l+
pm × sstr + sapp) × n. In comparison with the approach
in Axis implementation, this approach will perform better
if pm + l/sstr < 1.

If template-based serialization is used, then the rela-
tion betweens andsTS (time to serialize the response using
a template) controls the performance cost. As the structure
of the message gets complex,sTS reduces as the number
of append operations decreases. Furthermore, if the length
of the elements as strings is known thensTS can be further
reduced. Hence,TTS < Tapache whensTS < s and this
should occur is many cases.
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Figure 5. Comparison of response times for complex ob-
jects.

The amount of available memory, the cache size, and
cache flushing policy will influencel, c, andpm. This will
influence the response time and scalability when caching
is used. Hence, appropriate configuration holds the key to
scalability. In the case of template-based serialization, a
small amount of memory per type and usually small num-
ber of types on a SOAP server should provide excellent
scalability with minimum extra memory requirements.

4.2 Experiments

The experimentation platform was a Linux 2.4.x server
containing two Athlon 1900+ processors and 2GB of
RAM. The Axis SOAP server (v1.1) and the services
were hosted inside a Apache Tomcat server v5.0.19 run
on SUN JVM (build1.4.204-b05). We used Velocity
Template Engine [15] in experiments related to template-
based serialization. For the purpose of timing, we used
sun.misc.Perf class included in the j2sdk 1.4.2 with
a resolution of 1M ticks per second. All results are aver-
aged over multiple runs.

We used five test cases to measure the performance
improvements provided by each strategy. In each test case,
a client invoked 100 identical SOAP calls on the server.
The test cases differed by the value and the structure of the
data returned in response. In the first test case, a integer was
returned as response and the same integer was returned in
all the 100 calls. The second test case was similar to the
first test case except that a random integer was returned for
each call. In the third and fourth test cases, integer arrays
were returned. The content of the array remained constant
across calls in the third test case while it was randomized in
the fourth test case. In the fifth test case, a complex object
whose structure was similar to the structure described in
Figure 3 was returned. The value of the complex object
remained constant across the calls.

Each test case was executed with no strategies (ns),
with request caching (rc), with element caching (ec), and
using template-based serializers (ts). In the case of request

caching, a TTL value of15 seconds was used. The cumu-
lative timing information for the test cases under different
settings are illustrated in Figures 4 and 5. Specific cases
for constant simple and complex objects are broken down
in Tables 1 and 2.

For most cases, a significant reduction in serialization
costs were achieved through caching and a template-based
encoding strategy. More specifically, for simple objects,
little to no speedup was found except for thers case, which
avoids the cost of serialization completely. This is to be ex-
pected, given the minimal costs of encoding something like
a single integer. On the other hand, more complex objects
like arrays often took one-third to one-half of the time for
unmodified Axis calls.

For distinctly cache-unfriendly scenarios, such as the
random array (which requires the overhead of a cache
lookup and insertion for each call), element caching proved
ineffectual, but template-based serialization provided a ma-
jor performance improvement. Choosing the correct strat-
egy for a service is left to the service deployer.

5 Future Work and Summary

In the future we plan to study the impact of memory on
the proposed strategies and various cache management op-
tions, as well as develop strategies to mitigate head-of-line
(HOL) blocking effects in the cache. From the developer’s
perspective, we plan to explore the automated generation
of response (and request) templates, whose practicality was
clearly shown in Section 4. As the experiments were exe-
cuted on Axis, we plan to submit our code for inclusion
into the primary Axis code base.

In this paper we have presented a new approach
for accelerating the performance of a vital portion of the
eCommerce infrastructure through the multi-level caching
of responses and customized template generation. Our
analysis predicts, and experimental results confirm, that
this approach can give substantial speedups (600+%) for
many practical applications, while exacting little to no per-
formance penalty for applications unsuited to the architec-
ture beyond the memory devoted to the cache. The latency
added by the cache is minimal for most types of requests,
and the user has the option of turning off caching for ser-
vices which are known to be cache-unfriendly.
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total d i c l s misc
ns 5421 935 907 0 0 2763 816

rc hit 568 0 0 0 19 0 549
rc miss 6202 941 1340 18 205 2824 879

ec 3064 915 927 .14 126.9 531.3 764
ts 3412 931 921 0 0 832 728

Table 1. Average time information for “constant integer array” test case.

total d i c l s misc
ns 13887 928 1323 0 0 10610 1026

rc hit 589 0 0 0 19 0 570
rc miss 14539 933 1642 219 18 10630 1097

ec 3793 896 1189 .37 403 931.6 873
ts 5068 912 1281 0 0 1897 978

Table 2. Average time information for “constant complex object” test case.
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