
CADENA: Enabling CCM-based Application Development

in Eclipse ∗

Venkatesh Prasad Ranganath Adam Childs Jesse Greenwald
Matthew B. Dwyer John Hatcliff Gurdip Singh

Department of Computing and Information Sciences, Kansas State University, US
{rvprasad,achilds,jesse,dwyer,hatcliff,singh}@cis.ksu.edu

Abstract

To support the trend toward component-based
systems, the Cadena project aims to provide an
Eclipse-based development environment that in-
cludes support for design, behavior modeling,
formal reasoning, and automated code synthesis
for systems built using the CORBA Component
Model. In this paper, we describe the basic func-
tionality of the Cadena tool, and summarize how
it is currently being evaluated by industrial part-
ners for use in developing high-assurance avionics
applications.

1 Introduction

Component-based architectures are often preferred
in the development of large-scale and highly-
configurable applications. Enterprise Java Beans[1]
and CORBA Component Model(CCM)[2] are two
such architectures with well-defined software devel-
opment process. There are a number of tools and
technologies that are being developed or supple-
mented in ways to support such architectures. Even
companies involved in real-time safety/mission-
critical domains have explored these architectures
and have expressed interest in adapting them.

As always with any architecture, good tool sup-

∗This work was supported in part by the U.S. Army Re-
search Office (DAAD190110564), by DARPA/IXO’s PCES
program (AFRL Contract F33615-00-C-3044), by NSF
(CCR-0306607) by Lockheed Martin, by Rockwell-Collins,
and by Intel Corporation (Grant 11462).

0ACM, (2003). This is the author’s version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The defini-
tive version was published in ACM Digital Library,
http://doi.acm.org/10.1145/965660.965665

port is needed to adapt and use it in real world. As
the component-based architectures are relatively
new, the required tool support is often lacking or
primitive (command-prompt based scripts) – espe-
cially in the case of CCM. In particular, tools to
provide design advice, synthesize aspects or prop-
erties of the application, perform optimizations,
and manage the artifacts of the application are
lacking. As the development of component-based
applications involves development and assembling
of components, reasoning about the correctness
of the components and component assemblies can
be an overwhelming task when carried out manu-
ally. Thus, the current state of affairs could bene-
fit greatly from an environment to develop, reason,
and prove properties about large-scale component-
based applications. Given the interest of indus-
tries dealing with real-time safety/mission-critical
domain, the degree to which support is available
to address these issues will strongly influence the
acceptance of these architectures.

We have developed the Cadena environment in
an attempt to address these issues. Cadena1[3] is
implemented as an Eclipse plug-in and supports
the development of component-based application
based on CCM specifications. The plug-in provides
the usual features found in an IDE such as editors
for various file formats, support to manage related
files as a project, interfaces to integrate and con-
trol various CCM implementations to build appli-
cations, and supplementary instrumentation inter-
faces to extend/enhance the plug-in or use it’s re-
sults in useful ways. In contrast to all existing CCM
development environments of which we are aware,
Cadena supports various analyses that enable the
user to perform sanity checks with ease, an intu-

1Available from http://cadena.projects.cis.ksu.edu

1



itive way to visualize the results of such analyses
(based on GEF ), a form-based editor to assemble
applications in a type safe manner, and languages
to describe various aspects of application models
in human readable form along with translators to
generate machine readable data from these descrip-
tions.

Another distinguishing feature of the Cadena
project is its emphasis on light-weight formal ver-
ification. Our group has extensive experience in
the area of software verification techniques, and
we have recently initiated the Cadena project to
respond to the growing use of component-based
systems, particularly in distributed real-time em-
bedded (DRE) systems where high-assurance is re-
quired. We view Cadena as our vehicle for injecting
various forms of verification based on static analy-
sis and model-checking technologies into the devel-
opment process for component-based systems. Ac-
cordingly, Cadena provides several different light-
weight specification formalisms for capturing be-
havioral properties such as data and control de-
pendencies and abstract state-machine semantics
at the level of component interfaces. These seman-
tic specifications are automatically checked using
a combination of architectural level slicing (static
dependence analysis) and model-checking [3].

Cadena was developed in the context of the
DARPA Program Composition for Embedded Sys-
tems (PCES) project in which we are required
to evaluate our technology using an experimental
testbed from Boeing’s Bold Stroke avionics mid-
dleware project. Bold Stroke provides support
for developing the mission-control software for sev-
eral of Boeing’s military aircraft including the F-
18 fighter. To provide support for this real-time
embedded domain, Cadena leverages its behavioral
specifications and dependence analysis to provide
aspect synthesis for simple real-time and quality-
of-service attributes.

The rest of this paper is organized as follows.
In the following section, we describe component-
based architecture with its benefits and drawbacks
from a software development process point of view.
We also present reasons why we think Eclipse and
component-based architecture development process
are an ideal match. In Section 3, we present the
various features and capabilities of Cadena. We
summarize the real world use of Cadena in Section
4. We conclude in Section 5 with an outline of the
extensions and enhancements to Cadena that are

in progress at present and are planned for in the
future.

2 Motivation

2.1 Component Architecture

There is no widely accepted definition of the term
component. A general consensus in the software
community is that it is a large executable entity,
its interface with the enclosing execution context2

is well defined, and it can be easily replaced in its
context. Given this description, component-based
architecture can be described as an architecture in
which components can advertise their functionality
via well-defined interfaces to the context. The well-
defined interface between the component and the
context is defined by the architecture.

In a concrete architecture, such as CCM,
the component’s interface will be defined using
CORBA’s Interface Definition Language (IDL)
by the developer of the component. Com-
ponents use and offer services via event-based
ports and message-based facets/receptacles (out-
going/incoming interface handles). The developer
can further control certain details pertaining to the
structure of the components in terms of implemen-
tation and persistence via Component Implemen-
tation Definition Language (CIDL). From these
descriptions the developer can then mechanically
generate skeletal implementations in languages of
his/her choice. To make the component system
independent, the developer will also describe the
facilities required from the context by the compo-
nent in a ccd file. From an implementation point of
view, the developer will specify implementation de-
tails, such as object code format, about a particular
component implementation in a csd file. This in-
formation is required to use/deploy the component.
From a process point of view, it is the responsibility
of the application assembler to create an assembly
from the available components to realize the appli-
cation. This assembly is stored in a cad file. From
hereon, it is the responsibility of the deployer to
use various artifacts(files) to deploy components on
various application servers within suitable contain-
ers (context) to construct the specified application.
Artifacts in this work flow can be combined, say

2Hereon, we will use the term context to indicate enclos-
ing execution context.

2



CIDL with IDL, in various ways leading to many
possible artifacts different in details but similar in
functionality.

Given the number of artifacts, their plausible
combinations, and distinct owners in the overview
of the development and deployment process, it is
easy imagine the degree of complexity involved in
managing a collection of artifacts correctly to real-
ize the specified application. Most of these artifacts
are automation-ready as they are XML documents.
This adds to the complexity as XML documents are
human-unfriendly in the absence of an intelligent
XML editor/viewer.

Features such as structured and automation-
ready artifacts, well-defined work flow, and me-
chanical translations from high level interface lan-
guages to low level languages with environment spe-
cific implementations should provide an opportu-
nity for tool developers to provide tools to deal
with these artifacts at a higher level and to gen-
erate these more specific artifacts in a easy way. If
these tools interplay on one development platform,
the software development process will be simplified
and human resources can be expended on more de-
manding issues such as reasoning about correctness.

2.2 Why Eclipse?

Eclipse is an extensible platform programmed in
Java on which various specific task-related exten-
sions have been stacked. Such stacking is possible
due to the stable core architecture which is exten-
sible via well-defined protocols to add new features
and capabilities.

The platform is largely system independent. The
fact that the extensions or plug-ins3 to the plat-
form must adhere to well-defined interfaces defined
by the core of the platform and that the plug-ins
can communicate via these interfaces allows tool
providers to expose their tools as plug-ins with
various degrees of dependencies on other plug-ins.
Since plug-ins are identified via names/id and inter-
faces rather than classes, the dependence between
plug-ins is orthogonal to their implementation. All
these facts make Eclipse an ideal platform for tools
to interplay.

We believe that the above facts about
component-based architecture, together with
features of Eclipse described above, make Eclipse

3Hereon, we will use plug-ins to refer to extensions and
plug-ins.

a vehicle to tackle previously mentioned issues and
present solutions in a simple and elegant form. The
support for dealing with various concepts such as
programming languages (Java and C++), architec-
ture implementations (compilers), infrastructures
(projects and workspaces), etc., in a seamless
and extensible manner under one umbrella is
another reason to choose Eclipse. Given such a
platform, a new tool that is provided as a plug-in
to the platform can be inducted into the main
development cycle rather easily. These along with
native IDE features of Eclipse are extensively used
in Cadena to deliver a development environment
for component-based applications.

3 Cadena

In this section, we provide the details of Cadena in
terms of artifacts that make up a project under Ca-
dena along with the features of Cadena that aid in
the development of these artifacts. We intersperse
the presentation with Eclipse projects and platform
entities that have been used to realize the feature.

3.1 Artifacts

A component-based application is made up of a col-
lection of files of various types. As mentioned in
Section 2.1, there are idl files written in CORBA
IDL that describe the interface of the components.
Each such component definition can then be aug-
mented with some minimal implementation details.
Such details are described in cidl files via CORBA
CIDL. Hence, it is possible to combine an idl file
with many cidl files. These artifacts are used to
generate java files in which business logic needs to
be filled in by the developer. Also, there are two
descriptor files (csd, ccd) which are crucial in de-
ployment of the component. These are the only
artifacts that are critical to the component devel-
oper(designer and implementor).

We have recognized that it is possible for the
developer to express abstractions of the behavior
of components in an implementation independent
manner by referring only to entities exposed in the
artifacts listed above. This is accomplished allow-
ing developers to create light-weight behavioral de-
scriptions via a simple notation that we have devel-
oped called the Component Property Specification
(CPS) language. At present, this language enables

3



the developer expose the dependency between var-
ious ports, facets and receptacles of a component.
Through the cps file, it is possible to specify depen-
dency in a component mode-specific manner. For
example, it is important in some of applications to
be able to specify that when a component is in a
particular mode (i.e., state), it only responds to
events on a particular subset of its event ports.

As described earlier, these defined components
are assembled into a system by an assembler in
XML-based CORBA CAD (cad) files. Instead of
providing a XML editor to edit such file, we have
opted for a human readable language in Cadena to
describe such assemblies. The language is general
enough to represent all the properties that can be
captured in cad files, hence, the translation in ei-
ther direction is trivial. We refer to the proprietary
assembly language as Cadena CAD language and
corresponding files as scenario files.

Depending on the type of backend used to gener-
ate the implementation of the defined system, Ca-
dena generates various deployment files compatible
with that backend. Currently, Cadena can gen-
erate an assembly script in Java, cad files which
are CORBA compliant, and assembly descriptors
which are Boeing4 component model specific.

3.2 Tying them together

Cadena provides a project wizard in Eclipse to cre-
ate a project with a pre-defined structure in which
the above mentioned artifacts can be managed. Ca-
dena provides at least one editor for each artifact
described in the previous section. Separate editors
is dedicated to idl, cidl, and cps files is pro-
vided. All text editors provided in Cadena are pro-
vide syntax highlighting.

The idl editor uses an interface repository via
standard CORBA interfaces to type check the in-
terface description. Hence, the developer can use
any interface repository (remote/local) when de-
veloping a component. Like the idl editor, the
cps editor also uses an interface repository to type
check property descriptions of a component.

One of the most sophisticated features of Ca-
dena is its support for assembling systems from
individual components. Cadena provides a multi-
page editor for scenario files that presents three
views/editors of the same assembly on different
pages. The text editor can be used to edit the

4Please refer to section 4 for more info.

scenario files via the keyboard. The user is bound
to make errors in this view as he/she has to manu-
ally ensure the type safety of the assembly in terms
of the types of the ports, facets, and receptacles
being connected.

The above situation can be avoided by using the
form-based editor. This editor allows the user to
view the assembly as a spread-sheet of components
and connection between components. The user
can add/change/delete components and/or connec-
tions. The editor ensures syntactic and seman-
tic correctness of the assembly in terms of type-
safe connections and unique component identifiers.
This is done by using the interface repository to
provide the user with only valid choices when
he/she wishes to modify the assembly. For exam-
ple, if the user wants to change the end of a con-
nection, he/she will be provided with a list of ports
which can accept the connection and conform to the
type of the port on the other end of the connection.
There are few analyses that can synthesize informa-
tion such as dispatch rates and distribution based
on minimum information available in the assembly.

In addition to the text and spreadsheet system
assembly views, Cadena provides a graphical as-
sembly view implemented using Graphical Editor
Framework(GEF), an Eclipse tool project. This
view provides multiple analyses that utilize the as-
sociated cps specification along with the assembly
description to provide information intuitive while
dealing with graphs. These include detection of cy-
cles in connections and forward and backward slic-
ing along port connections. For example, this lat-
ter feature allows the developer to select a particu-
lar port and then have the analysis find all “down-
stream” components and ports that are affected by
an action on that port. The results of the analyses
are indicated graphically by changing the color of
displayed elements.

As for the issue of translation of these artifacts to
machine readable artifacts, Cadena provides trans-
lators from proprietary languages to machine read-
able and/or standard specific languages. For trans-
lations beyond this Cadena uses compilers avail-
able with various CCM implementations. Hence,
once configured, the user can drive the compilers
via graphical user interface. At present, Cadena
supports OpenCCM [4](a Java implementation of
CCM) and CIAO [5] (a C++ implementation of
CCM) as the CCM implementations which can be
driven from Cadena. We have defined a generic

4



minimal API via which various backends can be
integrated into Cadena.

4 Real World Experience

Thus far, the Boeing Bold Stroke test-bed has been
our primary “real-world” application. Boeing re-
searchers have been applying Cadena to various
representative systems since March 2003, and we
have made several minor releases with additional
features requested by Boeing engineers. As part of
the DARPA PCES project, we have developed an
extensive collection of metrics in conjunction with
Boeing engineers that are being used to assess the
benefits of Cadena in the Bold Stroke development
process.

We have also begun interactions with researchers
at Rockwell-Collins Advance Technology Center
where there is significant interest in using mid-
dleware and component-based systems in various
avionics applications. Our current efforts now are
focusing on assessing the extent to which aspects
of the Joint Tactical Radio System (JTRS) can be
modeled in Cadena. The JTRS program is having
a significant influence on the design of component
deployment infrastructure for embedded systems.

5 Conclusions

There are a number of directions that we are pur-
suing in future development of Cadena, and we
mention three of those here. First, are working
on adding a meta-architecture framework by which
collections of attributes and artifacts for particu-
lar product lines can be established. This will al-
low, for example, a Bold Stroke product-line pro-
file to be defined which will automatically present
to the developer interfaces for specifying real-time
and platform attributes specific to the Bold Stroke
development process. Second, we are working to-
ward a deeper integration of Cadena with Bogor [6]
– an extensible domain-specific model-checking en-
vironment that we have also developed in Eclipse.
This deeper integration will include more sophisti-
cated support for temporal property specifications,
and for display of error trace information provided
by the model-checker when a property violation is
found. Finally, we are continuing our intensive
interaction with researchers working on CIAO in
order to provide high-level means of configuring

CIAO and associated ACE/TAO layer to meet the
requirements of a variety of distributed real-time
embedded applications.

For more information about Cadena, includ-
ing screenshots, tutorials, technical papers, presen-
tations, and distribution information please visit
http://cadena.projects.cis.ksu.edu.

About the Authors

Venkatesh Prasad Ranganath is a Ph.D. student at

Kansas State University (KSU) working on static anal-

yses and program transformations to customize and

adapt Java programs. Adam Childs is M.S. student

at KSU working on specification languages and analy-

sis for component-based architectures. Jesse Greenwald

is a Research Associate in the Santos Laboratory at

KSU and is currently the primary developer of Cadena.

Matthew Dwyer and John Hatcliff are Associate Pro-

fessors at KSU working in the areas of static analysis,

model-checking, and other forms of software verifica-

tion. Gurdip Singh is a Professor at KSU working in

the area of distributed systems, middleware, and pro-

tocol verification.

References

[1] “Enterprise JavaBeans Specification (ver-
sion 2.0).” This specification is available at
http://java.sun.com/products/ejb/index.html.,
Aug 2001.

[2] “CORBA Components.” This specification is avail-
able at http://www.omg.org., Sept 2002.

[3] J. Hatcliff, W. Deng, M. B. Dwyer, G. Jung, and
V. P. Ranganath, “Cadena: An integrated devel-
opment, analysis, and verification environment for
component-based systems,” in Proceedings of the
2003 International Conference on Software Engi-
neering (ICSE’03), May 2003.

[4] “OpenCCM, a java implementation of
ccm.” This software is available at
http://openccm.objectweb.org.

[5] “Component-integrated ace orb, a c++ im-
plementation of ccm.” This software is
available at http://www.cse.wustl.edu/ nan-
bor/projects/CIAO/.

[6] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor:
An extensible and highly-modular model checking
framework,” in Proceedings of the European Soft-
ware Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering (FSE’03), 2003.

5


