
Notes about Atomicity∗

Venkatesh Prasad Ranganath
venkateshprasad.ranganath@gmail.com

April 27, 2006
revised: July 3, 2006

Recently there has been numerous efforts in detecting atomicity in programs. Most
of these efforts have been focused on verification of atomicity by leveraging atomicity
annotations either at compile-time [4, 3] or at runtime [2]. There have also been efforts
focused on static [5] and dynamic [6] detection of atomicity violations without relying
on annotations. Most of these efforts have been focused on method level atomicity.

In this informal notes, I will provide a non-exhaustive exposition about low-level
atomicity and introduce three weaker notions of atomicity along with sealing, a special
case of conditional atomicity. I will then express these notions in the static context in
terms of program dependences. These notions can be trivially realized by leveraging
the features of Indus,1 a program analysis and transformation toolkit.

1 Atomicity

Quoting from [2],

A statement sequence s executed by thread t is atomic if its execution is not
affected by and does not interfere with concurrently-executing threads.

If the statement sequence forms the body of a method, then the method is atomic.
We can paraphrase the above notion in terms of reading and writing of shared data.

Definition 1 (Strong Atomicity) A non-singleton statement sequence2 s executed by
thread t is strongly atomic if its execution neither reads nor writes shared data (or only
reads and writes thread local data).

In Figure 1, the statements of method sqAtomic() form an atomic sequence. To
see why, suppose the system starts with o, an instance of Number1, and threads t1 and
t2 ready to execute sqAtomic() and set(4) on o, respectively.

In any schedule of the above system, after the value of i is assigned to m in t1, the
execution of statements of set by thread t2 does not affect the result of the computation

∗If any of the contents of this notes has already been published by other authors, then please email me
the details about such publications and I will be glad to update these notes.

1http://indus.projects.cis.ksu.edu
2A sequence with more than one element is referred to as non-singleton sequence.

1



1 class Number1 {
2 int i = 5;
3
4 int sqNonAtomic() {
5 int j = i;
6 int k = i;
7 int l = j * k;
8 return l;
9 }

10 int sqAtomic() {
11 int m = i;
12 int n = m * m;
13 return n;
14 }
15
16 void set(int p) {
17 i = p;
18 }
19 }

Figure 1: Atomicity Example

embodied in sqAtomic() in thread t1, i.e. n will be equal to either 4*4=16 or
5*5=20 in sqAtomic. The key observation being that, after the execution of m=i in
sqAtomic(), the data read and written by the statement sequence in sqAtomic()
is local to the executing thread. By similar reasoning, the sequence k=i; l=j*k; in
sqNonAtomic can be classified as being atomic.

In contrast, the statements of method sqNonAtomic() do not form an atomic se-
quence. To see why, in the above system, suppose that thread t1 executessqNonAtomic()
instead of sqAtomic().

In this case, if the execution of line 17 by thread t2 is not interleaved between the
execution of lines 5 and 6 by thread t1, then the result of the computation embodied
in sqNonAtomic() executed by thread t1 will be identical across all schedules, i.e.
l will be equal to either 16 or 25. However, when line 17 executed by thread t2 is
interleaved between lines 5 and 6 executed by thread t1, l will be equal to 5*4=20.
The key observation in being that, after executing j=i, the data read by the statement
sequence in sqNonAtomic is not local to the executing thread.

2 First-read Atomicity

Suppose Number1 class in Figure 1 is modified into class Number2 as shown in
Figure 2. In sqAtomic method, the value of n is assigned to the instance field i,
hence, affecting any concurrent computation that is dependent on the value of i.

According to the earlier definition, Number2.sqAtomic method is non-atomic.
The difference between Number1.sqAtomic and Number2.sqAtomic is that the
assignment (write) i=n in the Number2.sqAtomic interferes with the concurrent
execution of Number2.sqNonAtomic. However, this change does not affect the
thread local behavior of Number2.sqAtomic.

In essence, independent of the interleavings in which the statement sequence in
Number2.sqAtomic are executed, the resulting thread local state will be identical
to that resulting by executing the sequence in a single step (serially). This new notion of
atomicity based solely on the absence of reading shared data in the non-first statements
of a statement sequence is referred to as first-read atomicity.

2



1 class Number2 {
2 int i = 5;
3
4 int sqNonAtomic() {
5 int j = i;
6 int k = i;
7 int l = j * k;
8 return l;
9 }

10 int sqAtomic() {
11 int m = i;
12 int n = m * m;
13 i = n;
14 return n;
15 }
16
17 void set(int p) {
18 i = p;
19 }
20 }

Figure 2: First-read Atomicity Example

1

2

 5 

127

 11 

3

 6 

58

 11 

4

 7 

24

 11 

5

 8 

10

 11 

6

 11 

7

 12 

8

 13 

9

 14 

11

 8 

15

 12 

12

 12 

13

 13 

14

 14 

16

 8 

19

 13 

17

 13 

18

 14 

20

 8 

22

 14 

21

 14 

23

 8 

25

 7 

39

 12 

26

 8 

30

 12 

27

 12 

28

 13 

29

 14 

31

 8 

34

 13 

32

 13 

33

 14 

35

 8 

37

 14 

36

 14 

38

 8 

40

 7 

49

 13 

41

 8 

44

 13 

42

 13 

43

 14 

45

 8 

47

 14 

46

 14 

48

 8 

50

 7 

55

 14 

51

 8 

53

 14 

52

 14 

54

 8 

56

 7 

57

 8 

59

 6 

93

 12 

60

 7 

74

 12 

61

 8 

65

 12 

62

 12 

63

 13 

64

 14 

66

 8 

69

 13 

67

 13 

68

 14 

70

 8 

72

 14 

71

 14 

73

 8 

75

 7 

84

 13 

76

 8 

79

 13 

77

 13 

78

 14 

80

 8 

82

 14 

81

 14 

83

 8 

85

 7 

90

 14 

86

 8 

88

 14 

87

 14 

89

 8 

91

 7 

92

 8 

94

 6 

113

 13 

95

 7 

104

 13 

96

 8 

99

 13 

97

 13 

98

 14 

100

 8 

102

 14 

101

 14 

103

 8 

105

 7 

110

 14 

106

 8 

108

 14 

107

 14 

109

 8 

111

 7 

112

 8 

114

 6 

123

 14 

115

 7 

120

 14 

116

 8 

118

 14 

117

 14 

119

 8 

121

 7 

122

 8 

124

 6 

125

 7 

126

 8 

128

 5 

197

 12 

129

 6 

163

 12 

130

 7 

144

 12 

131

 8 

135

 12 

132

 12 

133

 13 

134

 14 

136

 8 

139

 13 

137

 13 

138

 14 

140

 8 

142

 14 

141

 14 

143

 8 

145

 7 

154

 13 

146

 8 

149

 13 

147

 13 

148

 14 

150

 8 

152

 14 

151

 14 

153

 8 

155

 7 

160

 14 

156

 8 

158

 14 

157

 14 

159

 8 

161

 7 

162

 8 

164

 6 

183

 13 

165

 7 

174

 13 

166

 8 

169

 13 

167

 13 

168

 14 

170

 8 

172

 14 

171

 14 

173

 8 

175

 7 

180

 14 

176

 8 

178

 14 

177

 14 

179

 8 

181

 7 

182

 8 

184

 6 

193

 14 

185

 7 

190

 14 

186

 8 

188

 14 

187

 14 

189

 8 

191

 7 

192

 8 

194

 6 

195

 7 

196

 8 

198

 5 

232

 13 

199

 6 

218

 13 

200

 7 

209

 13 

201

 8 

204

 13 

202

 13 

203

 14 

205

 8 

207

 14 

206

 14 

208

 8 

210

 7 

215

 14 

211

 8 

213

 14 

212

 14 

214

 8 

216

 7 

217

 8 

219

 6 

228

 14 

220

 7 

225

 14 

221

 8 

223

 14 

222

 14 

224

 8 

226

 7 

227

 8 

229

 6 

230

 7 

231

 8 

233

 5 

247

 14 

234

 6 

243

 14 

235

 7 

240

 14 

236

 8 

238

 14 

237

 14 

239

 8 

241

 7 

242

 8 

244

 6 

245

 7 

246

 8 

248

 5 

249

 6 

250

 7 

251

 8 

Figure 3: Atomicity based unreduced state space when Number2.sqNonAtomic()
and Number2.sqAtomic() are executed concurrently.

Definition 2 (First-Read Atomicity) A non-singleton statement sequence s executed
by thread t is first-read atomic if none of the non-first statements in s read shared data.

2.1 Implications

To understand the implications in a dynamic context, let us consider a program that
creates an instance o of Number2 class (from Figure 2) and in which thread t1 invokes
sqNonAtomic() on o while thread t2 invokes sqAtomic() on o.

If this program was being model checked using the notion of strong atomicity, then
only lines 7 and 8 will form an atomic sequence. This will yield a state space as
shown in Figure 3. On the other hand if the model checker used the notion of first-read
atomicity, lines 6, 7, and 8 and lines 11, 12, 13, and 14 will form the atomic sequences.
This will yield a state space as shown in Figure 4. Clearly, the latter state space contains
lesser states, hence, it will be cheaper to model check.

However, the above approach fails when sqAtomic is extended by adding the
statement i=n+1; immediately after i=n; as shown in Figure 5. By first-read atom-
icity, thread t2 will only observe the value 4*4+1=17) of i (line 14) and it will not
observe the value 4*4=16 (line 13). The key observation being that first-read atomic-
ity prohibits the interleaving of reads of shared data between consecutive write to the
same shared data. Such data hiding may render the result of dynamic analysis such as
model checking to be unsound.

In the context of testing concurrent software, given a statement sequence s executed
by thread t1, incoming influences (via concurrent writes of shared data by threads other

3



1

2

 5 

7

 11,12,13,14 

3

 6,7,8 

5

 11,12,13,14 

4

 11,12,13,14 

6

 6,7,8 

8

 5 

9

 6,7,8 

Figure 4: First-read atomicity based unreduced state space when
Number2.sqAtomic() and Number2.sqNonAtomic() are executed con-
currently by threads t1 and t2, respectively.

1 class Number3 {
2 int i = 5;
3
4 int sqNonAtomic() {
5 int j = i;
6 int k = i;
7 int l = j * k;
8 return l;
9 }

10 int sqAtomic() {
11 int m = i;
12 int n = m * m;
13 i = n;
14 i = n + 1;
15 return n;
16 }
17
18 void set(int p) {
19 i = p;
20 }
21 }

Figure 5: First-write Atomicity Example

than t1) on s are relevant to test s but not the outgoing influence of s (via concurrent
writes of shared data by s in t1). Also, longer sequences imply fewer number of test
cases. Hence, first-read atomicity is a good choice to trivially optimize specifying and
testing concurrent software. However, this choice is directional, i.e. sequence s should
be considered atomic (according to first-read atomicity) when specifying/testing only
s.

3 First-write Atomicity

To address the shortcomings of first-read atomicity in dynamic context, we can in-
troduce a new notion atomicity based solely on the absence of writing shared data in
non-first statements of a statement sequence and this notion is referred to as first-write
atomicity.

4



1

2

 5,6,7,8 

6

 11,12 

3

 11,12 

4

 13 

5

 14,15 

7

 5,6,7,8 

10

 13 

8

 13 

9

 14,15 

11

 5,6,7,8 

13

 14,15 

12

 14,15 

14

 5,6,7,8 

Figure 6: First-write atomicity based unreduced state space when
Number2.sqNonAtomic() and Number2.sqAtomic() are executed con-
currently.

Definition 3 (First-Write Atomicity) A non-singleton statement sequence s executed
by thread t is first-write atomic if none of the non-first statements in s write shared
data.

Hence, a dynamic analysis such as model checking can consider each first-write
atomic sequences as a single step. In the code in Figure 5, lines 5, 6, 7, and 8, lines 11
and 12, and lines 14 and 15 will form the first-write atomic sequences.

Interestingly, the first-write atomicity incorrectly forces j and k in sqNonAtomic
to take on the same value of i even when line 19 of set(int) can be interleaved
between line 5 and line 6 in a concurrent scenario. The reason being that first-write
atomicity does not allow writes of shared data to be interleaved between consecutive
reads of the same shared data.

4 Weak Atomicity

The above shortcomings is addressed by weak-atomicity.

Definition 4 (Weak Atomicity) A non-singleton statement sequence s executed by
thread t is weakly atomic if none of the non-first statements in s read or write shared
data.

In contrast with atomicity, the weakly atomic sequences in various examples are given
below.

5



• Figure 1: line 5, line 6, 7, and 8, lines 11, 12, and 13.

• Figure 2: line 5, line 6, 7, and 8, lines 11 and 12, and lines 13 and 14.

• Figure 5: line 5, line 6, 7, and 8, lines 11 and 12, line 13, line 14 and 15.

5 Locks

If we model lock acquisition as a blocking data read and lock release as a data write,
then the above notions can be trivially extended to handle sequences containing lock
acquiring and releasing statements.

Locking Patterns Most efforts pertaining to atomicity consider locking patterns to
combine access of shared data into atomic regions. For example, if every access to
field f of an object o in a program is protected by a lock l, then one could safely
conclude that access to o.f can be perceived as thread-local and hence the access can
be merged into the neighbouring atomic region. This optimization becomes obvious
when atomicity is expressed in terms of program dependences.

6 Program Dependences

The above notions can be expressed in terms of program dependences.

• A statement sequence s is atomic if none of statements participate in interference
or ready dependences.

• A statement sequence s is first-read atomic if none of non-first statements partic-
ipate as dependents in interference or ready dependences.

• A statement sequence s is first-write atomic if none of non-first statements par-
ticipate as dependees in interference or ready dependences.

• A statement sequence s is weakly atomic if none of non-first statement participate
in interference or ready dependences.

Results from dependence analyses (as provided in Indus) can be used to construct
atomic sequences according to the above definitions.

Locking Patterns As mentioned in the previous section, locking patterns can be
leveraged to enlarge atomic regions. In case of program dependences, locking patterns
enable us to prune away spurious interference dependences, hence, trivially contribut-
ing to the enlargment of atomic regions.

6



7 Sealing in Java

In dynamic analysis such as model checking, it is optimal if we could execute a large
sequence of statements as a single step. To do so, none of the non-first statements in the
sequence should operate (read/write) on shared data. Proving such absence via static
analysis is expensive. Instead, we could take a simple hybrid approach3.

To give a concrete example, consider model checking Java programs. A flow-
insensitive static analysis can detect

1. if the statements enclosed in the dynamic scope4 of the method do not access
(read/write) global data5 and

2. if no shared data is accessed (read/written) in any of the possible access paths
leading from the parameters and receiver of a method.

If condition (1) and (2) are satisfied, then the method is marked as atomic. If condition
(1) is satisfied and condition (2) is not satisfied, then the method is marked as sealed
and the possible violating access paths are recorded. If condition (1) is not satisfied,
then the method is marked as open.

During model checking, the model checker refers to the analysis to check if a
method is atomic. If so, the model checker executes the method as a single transition.
If not, the model checker checks if the method is sealed. If so, it executes the method
as a single transition if it can verify the possible violating access paths do not access
shared data. If the method is open, then the model checker executes each statement as
a single transition.

In scenarios where global data is absent, condition (1) is always true and no method
will be marked as open by the static analysis. Indus currently supports the detection
of atomic and sealed method. However, it does not (yet) provide support to extract the
possible violating access paths.

Other applications Similar to model checking, in applications such as online pro-
gram optimizations such as JIT compilation. Sealing information can be used to gener-
ate minimal atomicity conditions offline and these conditions can be leveraged online
to improve performance by removing unnecessary synchronization and in turn reduc-
ing runtime overheads such as scheduling costs (reduced interleavings) and memory
system costs (reducing memory barriers).

Further, the same conditions can be used at runtime to check if a method aggres-
sively annotated as atomic is indeed atomic (even before executing the method).

3This approach is inspired by dynamic heap-reachability based escape analysis implemented in Bogor
[1]

4Dynamic scope of a method is the static scope of the method along with the dynamic scope of the
methods invoked in the method.

5Data reachable from static fields in the system are referred to as global data.

7



References

[1] M. B. Dwyer, J. Hatcliff, Robby, and V. P. Ranganath. Exploiting object escape
and locking information in partial-order reductions for concurrent object-oriented
programs. Formal Methods in System Design, 25(2-3):199–240, 2004.

[2] C. Flanagan and S. N. Freund. Atomizer: a dynamic atomicity checker for multi-
threaded programs. In Proceedings of Symposium on Principles of programming
languages (POPL), 2004.

[3] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity. In Proceed-
ings of the 2003 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’03), 2003.

[4] C. Flanagan and S. Qadeer. Types For Atomicity. In Proceedings of the 2003 ACM
SIGPLAN international workshop on Types in Languages Design and Implemen-
tation (TLDI), pages 1–12, 2003.

[5] C. von Praun and T. Gross. Static Conflict Analysis for Multi-Threaded Object-
Oriented Programs. In Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI’03), pages 115–128,
San Diego, CA, USA, Jun 2003.

[6] L. Wang and S. D. Stoller. Runtime Analysis of Atomicity for Multithreaded
Programs. IEEE Transactions on Software Engineering, 32(2):93–110, February
2006.

8


